An improved bound on the largest induced forests for triangle-free planar graphs

被引:1
作者
Kowalik, Lukasz [1 ]
Luzar, Borut [2 ]
Skrekovski, Riste [2 ]
机构
[1] Warsaw Univ, Inst Informat, PL-02097 Warsaw, Poland
[2] Inst Math Phys & Mech, Ljubljana 1111, Slovenia
关键词
Induced forest; Forest number; Decycling number; INDUCED TREES;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We proved that every planar triangle-free graph of order n has a subset of vertices that induces a forest of size at least (71n + 72)/128. This improves the earlier work of Salavatipour (2006). We also pose some questions regarding planar graphs of higher girth.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 10 条
  • [1] MAXIMUM INDUCED FORESTS OF PLANAR GRAPHS
    AKIYAMA, J
    WATANABE, M
    [J]. GRAPHS AND COMBINATORICS, 1987, 3 (02) : 201 - 202
  • [2] Albertson M. O., 1979, GRAPH THEORY REL TOP, P357
  • [3] Problems and results in extremal combinatorics - I
    Alon, N
    [J]. DISCRETE MATHEMATICS, 2003, 273 (1-3) : 31 - 53
  • [4] Large induced forests in sparse graphs
    Alon, N
    Mubayi, D
    Thomas, R
    [J]. JOURNAL OF GRAPH THEORY, 2001, 38 (03) : 113 - 123
  • [5] MAXIMUM INDUCED TREES IN GRAPHS
    ERDOS, P
    SAKS, M
    SOS, VT
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) : 61 - 79
  • [6] Large induced trees in Kr-free graphs
    Fox, Jacob
    Loh, Po-Shen
    Sudakov, Benny
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 494 - 501
  • [7] Karp R.M., 1972, PLENUM PRESS SURV ST, P85, DOI 10.1007/978-1-4684-2001-2_9
  • [8] Matousek J, 2008, ELECTRON J COMB, V15
  • [9] Punnim N, 2006, THAI J MATH, V4, P145
  • [10] Large induced forests in triangle-free planar graphs
    Salavatipour, MR
    [J]. GRAPHS AND COMBINATORICS, 2006, 22 (01) : 113 - 126