Stability of Lie group homomorphisms and Lie subgroups

被引:0
作者
Cardenas, Cristian Camilo [1 ]
Struchiner, Ivan [2 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Rua Prof Marcos Waldemar Freitas Reis S-N, BR-24210201 Niteroi, RJ, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lie groups; Deformation; Stability; DEFORMATIONS;
D O I
10.1016/j.jpaa.2019.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a Moser type argument to show when a deformation of a Lie group homomorphism and of a Lie subgroup is trivial. For compact groups we obtain stability results (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1280 / 1296
页数:17
相关论文
共 12 条
[1]  
Aintablian L., 2017, THESIS
[2]   The Nash-Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras [J].
Brega, Alfredo ;
Cagliero, Leandro ;
Chaves-Ochoa, Augusto .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (09) :2250-2265
[3]   DEFORMATIONS OF LIE SUBGROUPS [J].
COPPERSMITH, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 233 (OCT) :355-366
[4]   Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes [J].
Crainic, M .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :681-721
[5]   Deformations of Lie Groupoids [J].
Crainic, Marius ;
Mestre, Joao Nuno ;
Struchiner, Ivan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (21) :7662-7746
[6]   A survey on stability and rigidity results for Lie algebras [J].
Crainic, Marius ;
Schatz, Florian ;
Struchiner, Ivan .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (05) :957-976
[7]  
Jafarpour S., 2014, TIME VARYING VECTOR
[8]  
LEE DH, 1974, T AM MATH SOC, V191, P353
[9]   DEFORMATIONS OF HOMOMORPHISMS OF LIE GROUPS AND LIE ALGEBRAS [J].
NIJENHUIS, A ;
RICHARDS.RW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (01) :175-+
[10]  
Renault J, 1980, GROUPOID APPROACH C, V793