Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation

被引:70
作者
Wu, Jianping [1 ]
Geng, Xianguo [2 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Sci, Zhengzhou 450046, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 53卷
基金
中国国家自然科学基金;
关键词
Inverse scattering transform; Coupled mKdV equation; Multi-soliton solution; KDV;
D O I
10.1016/j.cnsns.2017.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 17 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]   GENERALIZED KDV AND MKDV EQUATIONS ASSOCIATED WITH SYMMETRICAL-SPACES [J].
ATHORNE, C ;
FORDY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :1377-1386
[3]   Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation [J].
Geng, Xianguo ;
Wu, Jianping .
WAVE MOTION, 2016, 60 :62-72
[4]   Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy [J].
Geng, Xianguo ;
Zhai, Yunyun ;
Dai, H. H. .
ADVANCES IN MATHEMATICS, 2014, 263 :123-153
[5]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1456-1458
[6]   Soliton solutions of a coupled modified KdV equations [J].
Iwao, M ;
Hirota, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (03) :577-588
[7]   The coupled modified Korteweg-de Vries equations [J].
Tsuchida, T ;
Wadati, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) :1175-1187
[8]   MODIFIED KORTEWEG-DEVRIES EQUATION [J].
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (05) :1289-1296
[9]   Prolongation structures and matter-wave solitons in F=1 spinor Bose-Einstein condensate with time-dependent atomic scattering lengths in an expulsive harmonic potential [J].
Wang, Deng-Shan ;
Ma, Yu-Quan ;
Li, Xiang-Gui .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) :3556-3569
[10]   Integrability and bright soliton solutions to the coupled nonlinear Schrodinger equation with higher-order effects [J].
Wang, Deng-Shan ;
Yin, Shujuan ;
Tian, Ye ;
Liu, Yifang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 :296-309