BOCKSTEIN THEOREM FOR NILPOTENT GROUPS

被引:0
作者
Cencelj, M. [1 ]
Dydak, J. [2 ]
Mitra, A. [2 ]
Vavpetic, A. [3 ]
机构
[1] Inst Math Phys & Mech, SI-1111 Ljubljana, Slovenia
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[3] Univ Ljubljana, Fak Matemat Fiz, SI-1111 Ljubljana, Slovenia
关键词
Extension dimension; cohomological dimension; absolute extensor; nilpotent groups; COHOMOLOGICAL DIMENSION; METRIZABLE-SPACES; EXTENSION;
D O I
10.1090/S0002-9939-09-10143-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the definition of Bockstein basis sigma(G) to nilpotent groups G. A metrizable space X is called a Bockstein space if dim(G)(X) = sup {dim(H)(X)vertical bar H is an element of sigma(G)} for all Abelian groups G. The Bockstein First Theorem says that all compact spaces are Bockstein spaces. Here are the main results of the paper: Theorem 0.1. Let X be a Bockstein space. If G is nilpotent, then dim(G)(X) <= 1 if and only if sup {dim(H)(X)vertical bar H is an element of sigma(C)} <= 1. Theorem 0.2. X is a Bockstein space ifand only if dim(Z(iota)) (X) = dim (Z) over cap ((l)) (X) for all subsets l of prime numbers.
引用
收藏
页码:1501 / 1510
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1982, GRADUATE TEXTS MATH
[2]   Hurewicz-Serre theorem in extension theory [J].
Cencelj, M. ;
Dydak, J. ;
Mitra, A. ;
Vavpetic, A. .
FUNDAMENTA MATHEMATICAE, 2008, 198 (02) :113-123
[3]   Extension of maps into nilpotent spaces III [J].
Cencelj, M ;
Dranishnikov, A .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (2-3) :208-212
[4]   Cohomological dimension with respect to perfect groups [J].
Dranishnikov, Alexander N. ;
Repovs, Dusan .
TOPOLOGY AND ITS APPLICATIONS, 1996, 74 (1-3) :123-140
[5]  
DRANISHNIKOV AN, 1993, TOPOL P, V18, P57
[6]  
DRANISHNIKOV AN, 1999, TOPOLOGY ATLAS
[7]   COHOMOLOGICAL DIMENSION AND METRIZABLE-SPACES [J].
DYDAK, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :219-234
[8]   Extension dimension for paracompact spaces [J].
Dydak, J .
TOPOLOGY AND ITS APPLICATIONS, 2004, 140 (2-3) :227-243
[9]   Cohomological dimension and metrizable spaces .2. [J].
Dydak, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1647-1661
[10]  
HILTON P, 1984, LECT NOTES MATH, V1053