Layered P2-Type K0.44Ni0.22Mn0.78O2 as a High-Performance Cathode for Potassium-Ion Batteries

被引:102
作者
Zhang, Xinyuan [1 ]
Yang, Yubo [2 ]
Qu, Xianlin [3 ]
Wei, Zhixuan [1 ]
Zheng, Kun [3 ]
Yu, Haijun [2 ]
Du, Fei [1 ]
机构
[1] Jilin Univ, Key Lab Phys & Technol Adv Batteries, Minist Educ, Coll Phys,State Key Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
[2] Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Beijing Key Lab Microstruct & Property Solids, Inst Microstruct & Properties Adv Mat, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
full cells; Ni; Mn-based layered oxides; potassium-ion batteries; stable CEI layers; ELECTROLYTE INTERPHASE; OXIDE CATHODE; MANGANESE; INTERCALATION; INSIGHTS; STORAGE; LIFE;
D O I
10.1002/adfm.201905679
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (KIBs) are emerging as one of the most promising candidates for large-scale energy storage owing to the natural abundance of the materials required for their fabrication and the fact that their intercalation mechanism is identical to that of lithium-ion batteries. However, the larger ionic radius of K+ is likely to induce larger volume expansion and sluggish kinetics, resulting in low specific capacity and unsatisfactory cycle stability. A new Ni/Mn-based layered oxide, P2-type K0.44Ni0.22Mn0.78O2, is designed and synthesized. A cathode designed using this material delivers a high specific capacity of 125.5 mAh g(-1) at 10 mA g(-1), good cycle stability with capacity retention of 67% over 500 cycles and fast kinetic properties. In situ X-ray diffraction recorded for the initial two cycles reveals single solid-solution processes under P2-type framework with small volume change of 1.5%. Moreover, a cathode electrolyte interphase layer is observed on the surface of the electrode after cycling with possible components of K2CO3, RCO2K, KOR, KF, etc. A full cell using K0.44Ni0.22Mn0.78O2 as the cathode and soft carbon as the anode also exhibits exceptional performance, with capacity retention of 90% over 500 cycles as well as superior rate performance. These findings suggest P2-K0.44Ni0.22Mn0.78O2 is a promising candidate as a high-performance cathode for KIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] 2D Ni0.25Mn0.75O2: A high-performance cathode for multivalent ion batteries
    Liepinya, Diana
    Shepard, Robert
    Smeu, Manuel
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 202
  • [32] Manipulating Stable Layered P2-Type Cathode via a Co-Substitution Strategy for High Performance Sodium Ion Batteries
    Xiao, Jun
    Gao, Hong
    Tang, Kaikai
    Long, Mengqi
    Chen, Jun
    Liu, Hao
    Wang, Guoxiu
    SMALL METHODS, 2022, 6 (03)
  • [33] The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries
    Tang, Ke
    Huang, Yan
    Xie, Xin
    Cao, Shuang
    Liu, Lei
    Liu, Min
    Huang, Yuehua
    Chang, Baobao
    Luo, Zhigao
    Wang, Xianyou
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [34] A high voltage honeycomb layered cathode framework for rechargeable potassium-ion battery: P2-type K2/3Ni1/3Co1/3Te1/3O2
    Masese, Titus
    Yoshii, Kazuki
    Kato, Minami
    Kubota, Keigo
    Huang, Zhen-Dong
    Senoh, Hiroshi
    Shikano, Masahiro
    CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 985 - 988
  • [35] A New P2-Type Layered Oxide Cathode with Extremely High Energy Density for Sodium-Ion Batteries
    Hwang, Jang-Yeon
    Kim, Jongsoon
    Yu, Tae-Yeon
    Sun, Yang-Kook
    ADVANCED ENERGY MATERIALS, 2019, 9 (15)
  • [36] Research progress on P2-type layered oxide cathode materials for sodium-ion batteries
    Wu, Chen
    Xu, Yuxing
    Song, Jiechen
    Hou, Ying
    Jiang, Shiyang
    He, Rui
    Wei, Aijia
    Tan, Qiangqiang
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [37] K0.83V2O5: A New Layered Compound as a Stable Cathode Material for Potassium-Ion Batteries
    Zhang, Yuchuan
    Niu, Xiaogang
    Tan, Lulu
    Deng, Leqing
    Jin, Shifeng
    Zeng, Liang
    Xu, Hong
    Zhu, Yujie
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) : 9332 - 9340
  • [38] Structural Evolution in P2-type Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Liu, Zhengbo
    Liu, Jun
    CHEMNANOMAT, 2022, 8 (02)
  • [39] P2-type Na0.67Co0.35Ti0.20Mn0.44La0.01O2 cathode material with high-rate capability for sodium-ion batteries
    Tang, Jiantao
    Wang, Yanzhi
    Li, Yanhong
    Zhao, Jiabin
    Wang, Lijun
    Yang, Xiduo
    JOURNAL OF RARE EARTHS, 2019, 37 (12) : 1296 - 1304
  • [40] Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries
    Yang, Liu
    Luo, Shao-hua
    Wang, Yafeng
    Zhan, Yang
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    Mu, Wenning
    Teng, Fei
    CHEMICAL ENGINEERING JOURNAL, 2021, 404