Layered P2-Type K0.44Ni0.22Mn0.78O2 as a High-Performance Cathode for Potassium-Ion Batteries

被引:102
作者
Zhang, Xinyuan [1 ]
Yang, Yubo [2 ]
Qu, Xianlin [3 ]
Wei, Zhixuan [1 ]
Zheng, Kun [3 ]
Yu, Haijun [2 ]
Du, Fei [1 ]
机构
[1] Jilin Univ, Key Lab Phys & Technol Adv Batteries, Minist Educ, Coll Phys,State Key Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
[2] Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Beijing Key Lab Microstruct & Property Solids, Inst Microstruct & Properties Adv Mat, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
full cells; Ni; Mn-based layered oxides; potassium-ion batteries; stable CEI layers; ELECTROLYTE INTERPHASE; OXIDE CATHODE; MANGANESE; INTERCALATION; INSIGHTS; STORAGE; LIFE;
D O I
10.1002/adfm.201905679
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (KIBs) are emerging as one of the most promising candidates for large-scale energy storage owing to the natural abundance of the materials required for their fabrication and the fact that their intercalation mechanism is identical to that of lithium-ion batteries. However, the larger ionic radius of K+ is likely to induce larger volume expansion and sluggish kinetics, resulting in low specific capacity and unsatisfactory cycle stability. A new Ni/Mn-based layered oxide, P2-type K0.44Ni0.22Mn0.78O2, is designed and synthesized. A cathode designed using this material delivers a high specific capacity of 125.5 mAh g(-1) at 10 mA g(-1), good cycle stability with capacity retention of 67% over 500 cycles and fast kinetic properties. In situ X-ray diffraction recorded for the initial two cycles reveals single solid-solution processes under P2-type framework with small volume change of 1.5%. Moreover, a cathode electrolyte interphase layer is observed on the surface of the electrode after cycling with possible components of K2CO3, RCO2K, KOR, KF, etc. A full cell using K0.44Ni0.22Mn0.78O2 as the cathode and soft carbon as the anode also exhibits exceptional performance, with capacity retention of 90% over 500 cycles as well as superior rate performance. These findings suggest P2-K0.44Ni0.22Mn0.78O2 is a promising candidate as a high-performance cathode for KIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries
    Ruling Huang
    Qing Xue
    Jiao Lin
    XiXue Zhang
    Jiahui Zhou
    Feng Wu
    Li Li
    Renjie Chen
    Nano Research, 2022, 15 : 3143 - 3149
  • [2] Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries
    Huang, Ruling
    Xue, Qing
    Lin, Jiao
    Zhang, XiXue
    Zhou, Jiahui
    Wu, Feng
    Li, Li
    Chen, Renjie
    NANO RESEARCH, 2022, 15 (04) : 3143 - 3149
  • [3] Layered P2-Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High-Energy Potassium-Ion Batteries
    Deng, Tao
    Fan, Xiulin
    Chen, Ji
    Chen, Long
    Luo, Chao
    Zhou, Xiuquan
    Yang, Junhe
    Zheng, Shiyou
    Wang, Chunsheng
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)
  • [4] Chimie Douce Derived Novel P2-Type Layered Oxide for Potassium-Ion Batteries
    Jha, Pawan Kumar
    Golubnichiy, Alexander
    Sachdeva, Dorothy
    Banerjee, Abhik
    Gautam, Gopalakrishnan Sai
    Fichtner, Maximilian
    Abakumov, Artem M.
    Barpanda, Prabeer
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)
  • [5] P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries
    Deng, Qiang
    Zheng, Fenghua
    Zhong, Wentao
    Pan, Qichang
    Liu, Yanzhen
    Li, Youpeng
    Chen, Guilin
    Li, Yunsha
    Yang, Chenghao
    Liu, Meilin
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [6] Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries
    Manikandan, P.
    Ramasubramonian, D.
    Shaijumon, M. M.
    ELECTROCHIMICA ACTA, 2016, 206 : 199 - 206
  • [7] Interface engineering enabled high-performance layered P3-type K0.5MnO2 cathode for low-cost potassium-ion batteries
    Li, Fengchun
    Gu, Xin
    Wu, Shuang
    Dong, Sijin
    Wang, Juntao
    Dai, Pengcheng
    Li, Liangjun
    Liu, Dandan
    Wu, Mingbo
    ELECTROCHIMICA ACTA, 2023, 439
  • [8] A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries
    Chen, Tao
    Liu, Weifang
    Gao, Han
    Zhuo, Yi
    Hu, Hang
    Chen, Ao
    Zhang, Jianwen
    Yan, Jun
    Liu, Kaiyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (26) : 12582 - 12588
  • [9] P3-type layered K0.48Mn0.4Co0.6O2: a novel cathode material for potassium-ion batteries
    Sada, Krishnakanth
    Barpanda, Prabeer
    CHEMICAL COMMUNICATIONS, 2020, 56 (15) : 2272 - 2275
  • [10] P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries
    Buchholz, Daniel
    Chagas, Luciana Gomes
    Winter, Martin
    Passerini, Stefano
    ELECTROCHIMICA ACTA, 2013, 110 : 208 - 213