Path-following for a class of nonlinear systems with unstable zero dynamics

被引:5
作者
Dacic, DB [1 ]
Subbotin, MV [1 ]
Kokotovic, PV [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1429582
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the practical path-following problem formulated in this paper, it is required that the error between the system output and tire desired geometric path he less then any prespecified constant. If in a nonlinear MIMO system the output derivatives do not enter tire zero dynamics, a geometric condition on tire path is given under which a solution to this problem exists. The solution is obtained by combining input-to-state stability and switched-system methodology.
引用
收藏
页码:4915 / 4920
页数:6
相关论文
共 10 条
[1]  
AGUIAR AP, 2004, 5 IFAC S INT AUT VEH
[2]   Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control [J].
Al-Hiddabi, SA ;
McClamroch, NH .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (06) :780-792
[3]  
DACIC DB, 2004, UNPUB AUTOMATICA JUL
[4]  
HAUSER J, 1995, P IFAC S NONL CONTR
[5]   GEOMETRIC-PROPERTIES OF LINEARIZABLE CONTROL-SYSTEMS [J].
MARINO, R ;
BOOTHBY, WM ;
ELLIOTT, DL .
MATHEMATICAL SYSTEMS THEORY, 1985, 18 (02) :97-123
[6]  
Marino R., 1995, NONLINEAR CONTROL DE
[7]  
SANNUTI P, 1987, IEEE T AUTOMATIC CON, V17, P79
[8]  
SKEJTNE R, 2002, 15 WORLD C IFAC BARC
[9]   Robust output maneuvering for a class of nonlinear systems [J].
Skjetne, R ;
Fossen, TI ;
Kokotovic, PV .
AUTOMATICA, 2004, 40 (03) :373-383
[10]  
SKJETNE R, 2002, 15 INT C MATH THEOR