Polarization radiometric calibration method for multichannel polarization camera

被引:1
作者
Li, Yi [1 ,2 ]
Zhang, Haiyang [1 ,2 ]
Liu, Wei [1 ]
Yan, Changxiang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
OPTIK | 2018年 / 172卷
基金
中国国家自然科学基金;
关键词
Polarization radiometric imaging; Multichannel polarization camera; Calibration; Remote sensing and sensors; POLARIMETERS; DIVISION;
D O I
10.1016/j.ijleo.2018.07.083
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the field of space remote sensing, multichannel polarization camera, which records the radiance of the transmitted light at several specific angles simultaneously, plays a significant role. However, the nonuniform response among different channels will lead to measurement error. Since the polarization parameters of polarization elements are ignored in traditional radiometric calibration, so for multichannel polarization camera, the traditional calibration is not suitable. To cope with this issue, a polarimetric calibration will be introduced below. In this paper a polarization radiometric calibration method for a multichannel polarization camera is presented. A polarization radiometric calibration model is proposed in this paper to analytically describe the responses of digital number of the detector to the radiance of the incident light and the polarization parameters of polarization elements. Through a verification experiment, the polarization parameters and polarization radiometric calibration coefficients of a simulated polarization camera were obtained rapidly. Results of the experiment indicates that the accuracy of the final calibration is 0.8% at 670 nm. The proposed polarization radiometric calibration method can be used in the calibration of the multichannel polarization camera and satisfy the requirements of the existing polarization remote sensing detection.
引用
收藏
页码:980 / 987
页数:8
相关论文
共 21 条
[1]  
ASD, FIELD SPEC 4 STAND R
[2]  
Chipman R. A., 2009, HDB OPTICS
[3]   THE POLDER MISSION - INSTRUMENT CHARACTERISTICS AND SCIENTIFIC OBJECTIVES [J].
DESCHAMPS, PY ;
BREON, FM ;
LEROY, M ;
PODAIRE, A ;
BRICAUD, A ;
BURIEZ, JC ;
SEZE, G .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03) :598-615
[4]   Bilinear and bicubic interpolation methods for division of focal plane polarimeters [J].
Gao, Shengkui ;
Gruev, Viktor .
OPTICS EXPRESS, 2011, 19 (27) :26161-26173
[5]   Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 1: telescope and example instrument configurations [J].
Harrington, David M. ;
Sueoka, Stacey R. .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2017, 3 (01)
[6]  
Liao Y B, 2003, Polarization optics, P45
[7]  
Mikheenko L., 2014, P SOC PHOTO-OPT INS, V8511
[8]   Handy method to calibrate division-of-amplitude polarimeters for the first three Stokes parameters [J].
Morel, Olivier ;
Seulin, Ralph ;
Fofi, David .
OPTICS EXPRESS, 2016, 24 (12) :13634-13646
[9]   Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery [J].
Ratliff, Bradley M. ;
LaCasse, Charles F. ;
Tyo, J. Scott .
OPTICS EXPRESS, 2009, 17 (11) :9112-9125
[10]  
Shi S.X., 2008, PHYS OPTICS APPL OPT