A note on Hardy's theorem and rotations

被引:0
作者
Patra, Partha Sarathi [1 ]
机构
[1] Vidyasagar Univ, Hijli Coll, Dept Math, PO Hijli Cooperat, Kharagpur 721306, W Bengal, India
关键词
Uncertainty principle; Hardy's theorem; Hermite semigroup;
D O I
10.1007/s00233-021-10191-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a very short proof, using the Hermite semigroup, to a generalized version of Hardy's theorem due to Hogan and Lakey. We characterize f is an element of L-2(R-n) when decay of f and its Fourier transform (f) over cap is assumed in some rays of the complex plane. Also considering the decay of the Hermite coefficient of f is an element of L-2(R-n), we prove a version of Hardy's theorem related to rotation.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 9 条
[1]  
COWLING M, 1983, LECT NOTES MATH, V992, P443
[2]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[3]  
Hardy G., 1933, J. Lond. Math. Soc., V1, P227, DOI [10.1112/jlms/s1-8.3.227, DOI 10.1112/JLMS/S1-8.3.227]
[4]   Hardy's theorem and rotations [J].
Hogan, JA ;
Lakey, JD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) :1459-1466
[5]   A UNIQUENESS THEOREM OF BEURLING FOR FOURIER-TRANSFORM PAIRS [J].
HORMANDER, L .
ARKIV FOR MATEMATIK, 1991, 29 (02) :237-240
[6]  
Tang SF, 2009, ANAL MATH, V35, P273, DOI 10.1007/s10476-009-0403-y
[7]  
Thangavelu S., 2012, ORTHOGONAL FAMILIES, P251
[8]  
Thangavelu S., 2004, An Introduction to the Uncertainty Principle, DOI [10.1007/978-0-8176-8164-7, DOI 10.1007/978-0-8176-8164-7]
[9]  
Vemuri M.K., 2008, ARXIV PREPRINT ARXIV