Influence of noise-reduction techniques in sparse-data sample rotation tomographic imaging

被引:7
作者
Balasubramani, Vinoth [1 ]
Montresor, Silvio [2 ,3 ]
Tu, Han-Yen [4 ]
Huang, Chung-Hsuan [1 ]
Picart, Pascal [2 ,3 ,5 ]
Cheng, Chau-Jern [1 ]
机构
[1] Natl Taiwan Normal Univ, Inst Electroopt Engn, Taipei 11677, Taiwan
[2] Le Mans Univ, LAUM CNRS, UMR 6613, Ave Olivier Messiaen, F-72085 Le Mans 9, France
[3] Le Mans Univ, CNRS, Inst Acoust, Grad Sch, Ave Olivier Messiaen, F-72085 Le Mans 9, France
[4] Chinese Culture Univ, Dept Elect Engn, Taipei 11114, Taiwan
[5] Ecole Natl Super Ingenieurs Mans, Rue Aristote, F-72085 Le Mans 9, France
关键词
REFRACTIVE-INDEX; HOLOGRAPHIC TOMOGRAPHY; MICROSCOPY; ACCURACY; OBJECTS;
D O I
10.1364/AO.415284
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Data acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy. Three different cases of sample rotation tomography were reconstructed for dense angle with a step rotation at every 2 degrees, and for sparse angles with step rotation at every 5 degrees and 10 degrees. The three cases of tomographic reconstruction performance are analyzed with consideration for data processing using four noise-reduction techniques. The experimental results demonstrate potential capability in retaining the tomographic image quality, even at the sparse angle reconstructions, with the help of noise-reduction techniques. (C) 2021 Optical Society of America
引用
收藏
页码:B81 / B87
页数:7
相关论文
共 40 条
[1]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[2]   Adaptive wavefront correction structured illumination holographic tomography [J].
Balasubramani, Vinoth ;
Tu, Han-Yen ;
Lai, Xin-Ji ;
Cheng, Chau-Jern .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[4]  
Beauvoit B, 1993, Cell Biophys, V23, P91
[5]   Accuracy of image-plane holographic tomography with filtered backprojection: random and systematic errors [J].
Belashov, A. V. ;
Petrov, N. V. ;
Semenova, I. V. .
APPLIED OPTICS, 2016, 55 (01) :81-88
[6]   Optically controlled three-dimensional rotation of microscopic objects [J].
Bingelyte, V ;
Leach, J ;
Courtial, J ;
Padgett, MJ .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :829-831
[7]   Living specimen tomography by digital holographic microscopy:: morphometry of testate amoeba [J].
Charriere, Florian ;
Pavillon, Nicolas ;
Colomb, Tristan ;
Depeursinge, Christian ;
Heger, Thierry J. ;
Mitchell, Edward A. D. ;
Marquet, Pierre ;
Rappaz, Benjamin .
OPTICS EXPRESS, 2006, 14 (16) :7005-7013
[8]   Tomographic phase microscopy [J].
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Oh, Seungeun ;
Lue, Niyom ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
NATURE METHODS, 2007, 4 (09) :717-719
[9]   Refractive index tomography with structured illumination [J].
Chowdhury, Shwetadwip ;
Eldridge, Will J. ;
Wax, Adam ;
Izatt, Joseph .
OPTICA, 2017, 4 (05) :537-545
[10]   A compact synthetic aperture digital holographic microscope with mechanical movement-free beam scanning and optimized active aberration compensation for isotropic resolution enhancement [J].
Deng, Yuanbo ;
Huang, Chung-Hsuan ;
Vinoth, B. ;
Chu, Daping ;
Lai, Xin-Ji ;
Cheng, Chau-Jern .
OPTICS AND LASERS IN ENGINEERING, 2020, 134