Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes

被引:109
作者
Anderson, Jonas T. [1 ]
Duclos-Cianci, Guillaume [1 ]
Poulin, David [1 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ERROR-CORRECTING CODES; COMPUTATION;
D O I
10.1103/PhysRevLett.113.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Steane's 7-qubit quantum error-correcting code admits a set of fault-tolerant gates that generate the Clifford group, which in itself is not universal for quantum computation. The 15-qubit Reed-Muller code also does not admit a universal fault-tolerant gate set but possesses fault-tolerant T and control-control-Z gates. Combined with the Clifford group, either of these two gates generates a universal set. Here, we combine these two features by demonstrating how to fault-tolerantly convert between these two codes, providing a new method to realize universal fault-tolerant quantum computation. One interpretation of our result is that both codes correspond to the same subsystem code in different gauges. Our scheme extends to the entire family of quantum Reed-Muller codes.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
Aharonov D., 1997, P 29 ANN ACM S THEOR, P176
[2]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[3]  
[Anonymous], ARXIV14035280
[4]  
[Anonymous], P R SOC LOND A
[5]   Universal topological phase of two-dimensional stabilizer codes [J].
Bombin, H. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
NEW JOURNAL OF PHYSICS, 2012, 14
[6]   Clifford gates by code deformation [J].
Bombin, H. .
NEW JOURNAL OF PHYSICS, 2011, 13
[7]   Quantum measurements and gates by code deformation [J].
Bombin, H. ;
Martin-Delgado, M. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
[8]  
Bombin H., ARXIV13110879
[9]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[10]   Magic-state distillation with low overhead [J].
Bravyi, Sergey ;
Haah, Jeongwan .
PHYSICAL REVIEW A, 2012, 86 (05)