Imaging large vessels using cosmic-ray muon energy-loss techniques

被引:9
|
作者
Jenneson, P. M. [1 ]
Gilboy, W. B.
Simons, S. J. R.
Stanley, S. J.
Rhodes, D.
机构
[1] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[2] UCL, Dept Chem Engn, London WC1E 7JE, England
[3] British Nucl Fuels Plc, Res & Technol, Sellafield CA20 1PG, Seascale, England
关键词
cosmic-ray; muons; Monte-Carlo methods;
D O I
10.1016/j.cej.2006.06.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Imaging the internal structure of large vessels (2-20 m in diameter) is not possible with most traditional imaging methods. The sheer size renders gamma-ray and other high-energy photon, neutron, electrical and acoustic techniques useless, whilst the use of high-energy accelerators required to produce charged-particles of sufficient energy are impractical in most industrial situations. The use of naturally occurring high-energy (similar to GeV) cosmic-ray mu-mesons (muons) provides an effective solution to the penetration problem. The problems of low intensity at near-horizontal angles with the cosmic-ray muon flux are addressed by using energy-loss imaging methods. In other methodologies, using charge-particle energy-loss imaging techniques, only a few events are needed compared to many thousands required if attenuation measurements were to be employed. The energies of horizontal cosmic-ray muons are distributed largely between 0.1 and 1000 GeV with a mean energy of about 50 GeV. Radiation Transport Monte-Carlo methods (GEANT4) have been used to calculate the energy loss for a selection of industrial materials in the energy range of interest. The energy loss of the muons along a ray-sum are modelled and compared to attenuation losses along the ray-sum using energy resolving detectors in coincidence before and after the sample. The energy-loss spectra across different samples are measured, demonstrating that embedded materials can be identified with as few as 10 muons passing through the sample. It is proposed that the imaging modality can be extended into a full tomographic modality allowing material identification within each voxel. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 42 条
  • [31] Feasibility study of cosmic-ray components measurement by using a scintillating fiber tracker in space
    Wang, Jun-jing
    Wu, Xin
    Xu, Ming
    Perrina, Chiara
    Azzarello, Philipp
    Cadoux, Franck
    Favre, Yannick
    La Marra, Daniel
    Wu, Bo-bing
    RADIATION DETECTION TECHNOLOGY AND METHODS, 2021, 5 (03) : 389 - 403
  • [32] Simple coincidence technique for cosmic-ray intensity exploration via low-energy photon detection
    Knezevic, J.
    Mrdja, D.
    Bikit, K.
    Bikit, I
    Hansman, J.
    Slivka, J.
    Forkapic, S.
    APPLIED RADIATION AND ISOTOPES, 2019, 151 : 157 - 165
  • [33] A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing
    Baroni, G.
    Oswald, S. E.
    JOURNAL OF HYDROLOGY, 2015, 525 : 264 - 276
  • [34] Cosmic-ray discrimination capabilities of ΔE-E silicon nuclear telescopes using neural networks
    Ambriola, M
    Bellotti, R
    Cafagna, F
    Castellano, M
    Ciacio, F
    Circella, M
    De Marzo, CN
    Montaruli, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 440 (02): : 438 - 445
  • [35] Investigation of cosmic-ray and Solar Energetic Particle background of STIX using GEANT4 simulation
    Barylak, Jaromir
    Barylak, Aleksandra
    Mrozek, Tomasz
    Steslicki, Marek
    Podgorski, Piotr
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2018, 2018, 10808
  • [36] Investigation of cosmic-ray induced background of Germanium gamma spectrometer using GEANT4 simulation
    Nguyen Quoc Hung
    Vo Hong Hai
    Nomachi, Masaharu
    APPLIED RADIATION AND ISOTOPES, 2017, 121 : 87 - 90
  • [37] Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model
    Rodriguez, Lien
    Cardenas, Rolando
    Rodriguez, Oscar
    INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2013, 12 (04) : 326 - 330
  • [38] A search for flaring very-high-energy cosmic γ-ray sources with the L3+C muon spectrometer
    Achard, P.
    Adriani, O.
    Aguilar-Benitez, M.
    van den Akker, M.
    Alcaraz, J.
    Alemanni, G.
    Allaby, J.
    Aloisio, A.
    Alviggi, M. G.
    Anderhub, H.
    Andreev, V. P.
    Anselmo, F.
    Arefiev, A.
    Azemoon, T.
    Aziz, T.
    Bagnaia, P.
    Bajo, A.
    Baksay, G.
    Baksay, L.
    Baehr, J.
    Baldew, S. V.
    Banerjee, S.
    Banerjee, Sw.
    Barillere, R.
    Bartalini, P.
    Basile, M.
    Batalova, N.
    Battiston, R.
    Bay, A.
    Becattini, F.
    Becker, U.
    Behner, F.
    Bellucci, L.
    Berbeco, R.
    Berdugo, J.
    Berges, P.
    Bertucci, B.
    Betev, B. L.
    Biasini, M.
    Biglietti, M.
    Biland, A.
    Blaising, J. J.
    Blyth, S. C.
    Bobbink, G. J.
    Boehm, A.
    Boldizsar, L.
    Borgia, B.
    Bottai, S.
    Bourilkov, D.
    Bourquin, M.
    ASTROPARTICLE PHYSICS, 2006, 25 (05) : 298 - 310
  • [39] Estimating snow water equivalent using cosmic-ray neutron sensors from the COSMOS-UK network
    Wallbank, John R.
    Cole, Steven J.
    Moore, Robert J.
    Anderson, Seonaid R.
    Mellor, Edward J.
    HYDROLOGICAL PROCESSES, 2021, 35 (05)
  • [40] Determination of Cosmic-Ray Arrival Directions Using the System of EAS Front Detectors at the Tien Shan High-Altitude Station
    Shepetov, A. L.
    Zhukov, V. V.
    Ryabov, V. A.
    Saduev, N. O.
    Sadykov, T. Kh.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2024, 51 (04) : 128 - 134