On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria

被引:4
作者
Berthelsen, Marie Louisa Tolboll [1 ]
Hansen, Kristoffer Arnsfelt [1 ]
机构
[1] Aarhus Univ, Dept Comp Sci, DK-8200 Aarhus N, Denmark
关键词
Nash equilibrium; Computational complexity; Existential theory of the reals;
D O I
10.1007/s00224-022-10080-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the computational complexity of decision problems about Nash equilibria in m-player games. Several such problems have recently been shown to be computationally equivalent to the decision problem for the existential theory of the reals, or stated in terms of complexity classes,.R-complete, when m >= 3. We show that, unless they turn into trivial problems, they are there exists R-hard even for 3-player zero-sum games. We also obtain new results about several other decision problems. We show that when m >= 3 the problems of deciding if a game has a Pareto optimal Nash equilibrium or deciding if a game has a strong Nash equilibrium are there exists R-complete. The latter result rectifies a previous claim of NP-completeness in the literature. We show that deciding if a game has an irrational valued Nash equilibrium is there exists R-hard, answering a question of Bilo and Mavronicolas, and address also the computational complexity of deciding if a game has a rational valued Nash equilibrium. These results also hold for 3-player zero-sum games. Our proof methodology applies to corresponding decision problems about symmetric Nash equilibria in symmetric games as well, and in particular our new results carry over to the symmetric setting. Finally we show that deciding whether a symmetric m-player game has a non-symmetric Nash equilibrium is there exists R-complete when m >= 3, answering a question of Garg, Mehta, Vazirani, and Yazdanbod.
引用
收藏
页码:519 / 545
页数:27
相关论文
共 25 条
[1]  
[Anonymous], 1960, Pacific Journal of Mathematics
[2]  
Basu S., 2008, BOOK SERIES ALGORITH, V10
[3]   On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria [J].
Berthelsen, Marie Louisa Tolboll ;
Hansen, Kristoffer Arnsfelt .
ALGORITHMIC GAME THEORY (SAGT 2019), 2019, 11801 :153-167
[4]   ∃R-complete Decision Problems about (Symmetric) Nash Equilibria in (Symmetric) Multi-player Games [J].
Bilo, Vittorio ;
Mavronicolas, Marios .
ACM TRANSACTIONS ON ECONOMICS AND COMPUTATION, 2021, 9 (03)
[5]   The Complexity of Computational Problems About Nash Equilibria in Symmetric Win-Lose Games [J].
Bilo, Vittorio ;
Mavronicolas, Marios .
ALGORITHMICA, 2021, 83 (02) :447-530
[6]   Complexity of Rational and Irrational Nash Equilibria [J].
Bilo, Vittorio ;
Mavronicolas, Marios .
THEORY OF COMPUTING SYSTEMS, 2014, 54 (03) :491-527
[7]   ON A THEORY OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS - NP-COMPLETENESS, RECURSIVE FUNCTIONS AND UNIVERSAL MACHINES [J].
BLUM, L ;
SHUB, M ;
SMALE, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 21 (01) :1-46
[8]   Exotic Quantifiers, Complexity Classes, and Complete Problems [J].
Buergisser, Peter ;
Cucker, Felipe .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) :135-170
[9]   The computational complexity of some problems of linear algebra [J].
Buss, JF ;
Frandsen, GS ;
Shallit, JO .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1999, 58 (03) :572-596
[10]  
Canny J., 1988, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, P460, DOI 10.1145/62212.62257