Estimating mixtures of regressions

被引:118
作者
Hurn, M [1 ]
Justel, A
Robert, CP
机构
[1] Univ Bath, Dept Math Stat, Bath BA2 7AY, Avon, England
[2] Univ Autonoma Madrid, Dept Stat, E-28049 Madrid, Spain
[3] Univ Paris 09, F-75775 Paris, France
[4] Insee, CREST, Stat Lab, Paris, France
关键词
Bayesian inference; birth-and-death process; label switching; logistic regression; loss functions; MCMC algorithms; Poisson regression; switching regression;
D O I
10.1198/1061860031329
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article shows how Bayesian inference for switching regression models and their generalizations can be achieved by the specification of loss functions which overcome the label switching problem common to all mixture models. We also derive an extension to models where the number of components in the mixture is unknown, based on the birth- and-death technique developed in recent literature. The methods are illustrated on various real datasets.
引用
收藏
页码:55 / 79
页数:25
相关论文
共 27 条
[1]  
ALTALEB A, 1999, THESIS U ROUEN
[2]   TRACKING METHODS IN A MULTITARGET ENVIRONMENT [J].
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (04) :618-626
[3]  
Bernardo J.M., 2009, Bayesian Theory, V405
[4]   Bayesian estimation of switching ARMA models [J].
Billio, M ;
Monfort, A ;
Robert, CP .
JOURNAL OF ECONOMETRICS, 1999, 93 (02) :229-255
[5]  
BRENAC T, 1994, 185 INRETS
[6]   Markov chain Monte Carlo:: 10 years and still running! [J].
Cappé, O ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) :1282-1286
[7]  
CAPPE O, IN PRESS J ROYAL S B
[8]   Computational and inferential difficulties with mixture posterior distributions. [J].
Celeux, G ;
Hurn, M ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :957-970
[9]  
Damien P, 1999, J ROY STAT SOC B, V61, P331
[10]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363