Global changes in oceanic mesoscale currents over the satellite altimetry record

被引:125
作者
Martinez-Moreno, Josue [1 ,2 ]
Hogg, Andrew McC. [1 ,2 ]
England, Matthew H. [3 ,4 ]
Constantinou, Navid C. [1 ,2 ]
Kiss, Andrew E. [1 ,2 ]
Morrison, Adele K. [1 ,2 ]
机构
[1] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia
[2] Australian Natl Univ, ARC Ctr Excellence Climate Extremes, Canberra, ACT, Australia
[3] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[4] Univ New South Wales, ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1038/s41558-021-01006-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mesoscale eddy variability has increased in eddy-rich regions by 2-5% per decade but decreased in the tropical ocean over the satellite record (1993-2020). These changes will impact ocean-atmosphere heat and carbon exchange, with implications for regional and global climate. Oceanic mesoscale eddies play a profound role in mixing tracers such as heat, carbon and nutrients, thereby regulating regional and global climate. Yet, it remains unclear how the eddy field has varied over the past few decades. Furthermore, climate model predictions generally do not resolve mesoscale eddies, which could limit their accuracy in simulating future climate change. Here we show a global statistically significant increase of ocean eddy activity using two independent observational datasets of surface mesoscale eddy variability (one estimates surface currents, and the other is derived from sea surface temperature). Maps of mesoscale variability trends show heterogeneous patterns, with eddy-rich regions showing a significant increase in mesoscale variability of 2-5% per decade, while the tropical oceans show a decrease in mesoscale variability. This readjustment of the surface mesoscale ocean circulation has important implications for the exchange of heat and carbon between the ocean and atmosphere.
引用
收藏
页码:397 / +
页数:16
相关论文
共 54 条
  • [1] Abram NJ, 2014, NAT CLIM CHANGE, V4, P564, DOI [10.1038/NCLIMATE2235, 10.1038/nclimate2235]
  • [2] Improved Estimation of Proxy Sea Surface Temperature in the Arctic
    Banzon, Viva
    Smith, Thomas M.
    Steele, Michael
    Huang, Boyin
    Zhang, Huai-Min
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2020, 37 (02) : 341 - 349
  • [3] Ocean mesoscale mixing linked to climate variability
    Busecke, Julius J. M.
    Abernathey, Ryan P.
    [J]. SCIENCE ADVANCES, 2019, 5 (01):
  • [4] Twentieth-century sea surface temperature trends
    Cane, MA
    Clement, AC
    Kaplan, A
    Kushnir, Y
    Pozdnyakov, D
    Seager, R
    Zebiak, SE
    Murtugudde, R
    [J]. SCIENCE, 1997, 275 (5302) : 957 - 960
  • [5] Identification of eddies from sea surface temperature maps with neural networks
    Castellani, M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (08) : 1601 - 1618
  • [6] Global observations of large oceanic eddies
    Chelton, Dudley B.
    Schlax, Michael G.
    Samelson, Roger M.
    de Szoeke, Roland A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (15)
  • [7] The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll
    Chelton, Dudley B.
    Gaube, Peter
    Schlax, Michael G.
    Early, Jeffrey J.
    Samelson, Roger M.
    [J]. SCIENCE, 2011, 334 (6054) : 328 - 332
  • [8] Constantinou N.C, 2021, ZENODO, DOI [10.1038/s41558-021-01006-9, DOI 10.1038/S41558-021-01006-9]
  • [9] Constantinou N.C, ZENODO, DOI [10.5281/zenodo.4458783, DOI 10.5281/ZENODO.4458783]
  • [10] Increased Eddy Activity in the Northeastern Pacific during 1993-2011
    Ding, Mengrong
    Lin, Pengfei
    Liu, Hailong
    Chai, Fei
    [J]. JOURNAL OF CLIMATE, 2018, 31 (01) : 387 - 399