Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review

被引:52
作者
Stepanova, Mariia [1 ]
Korzhikova-Vlakh, Evgenia [1 ]
机构
[1] Russian Acad Sci, Inst Macromol Cpds, Bolshoy Pr 31, St Petersburg 199004, Russia
关键词
microcrystalline cellulose; nanocrystalline cellulose; cellulose fibers; cellulose modification; aliphatic polyesters; polyhydroxyalkanoates; poly(lactic acid); poly(epsilon-caprolactone); poly(glycolic acid); poly(lactic acid-co-glycolic acid); poly(hydroxybutyrate); poly(butylene succinate); (bio)composites; green" materials; mechanical properties; thermal properties; degradation; biocompatibility; POLYLACTIC ACID PLA; POLY(LACTIC ACID); MECHANICAL-PROPERTIES; SURFACE-MODIFICATION; MICROFIBRILLATED CELLULOSE; NANOCRYSTALLINE CELLULOSE; SILVER NANOPARTICLES; THERMAL-PROPERTIES; HIGH-PERFORMANCE; POLY(EPSILON-CAPROLACTONE) COMPOSITES;
D O I
10.3390/polym14071477
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Aliphatic polyesters/cellulose composites have attracted a lot attention due to the perspectives of their application in biomedicine and the production of disposable materials, food packaging, etc. Both aliphatic polyesters and cellulose are biocompatible and biodegradable polymers, which makes them highly promising for the production of "green" composite materials. However, the main challenge in obtaining composites with favorable properties is the poor compatibility of these polymers. Unlike cellulose, which is very hydrophilic, aliphatic polyesters exhibit strong hydrophobic properties. In recent times, the modification of cellulose micro- and nanomaterials is widely considered as a tool to enhance interfacial biocompatibility with aliphatic polyesters and, consequently, improve the properties of composites. This review summarizes the main types and properties of cellulose micro- and nanomaterials as well as aliphatic polyesters used to produce composites with cellulose. In addition, the methods for noncovalent and covalent modification of cellulose materials with small molecules, polymers and nanoparticles have been comprehensively overviewed and discussed. Composite fabrication techniques, as well as the effect of cellulose modification on the mechanical and thermal properties, rate of degradation, and biological compatibility have been also analyzed.
引用
收藏
页数:55
相关论文
共 267 条
[51]   Dispersion and Reinforcing Potential of Carboxymethylated Nanofibrillated Cellulose Powders Modified with 1-Hexanol in Extruded Poly(Lactic Acid) (PLA) Composites [J].
Eyholzer, C. ;
Tingaut, P. ;
Zimmermann, T. ;
Oksman, K. .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2012, 20 (04) :1052-1062
[52]   Surface modification of cellulose nanocrystals [J].
Eyley, Samuel ;
Thielemans, Wim .
NANOSCALE, 2014, 6 (14) :7764-7779
[53]   Influence of Interfacial Enantiomeric Grafting on Melt Rheology and Crystallization of Polylactide/Cellulose Nanocrystals Composites [J].
Fang, Hua-Gao ;
Yang, Kang-Jie ;
Xie, Qi-Zheng ;
Chen, Xu ;
Wu, Sheng-Li ;
Ding, Yun-Sheng .
CHINESE JOURNAL OF POLYMER SCIENCE, 2022, 40 (01) :93-106
[54]   How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review [J].
Ferreira, F. V. ;
Dufresne, A. ;
Pinheiro, I. F. ;
Souza, D. H. S. ;
Gouveia, R. F. ;
Mei, L. H. I. ;
Lona, L. M. F. .
EUROPEAN POLYMER JOURNAL, 2018, 108 :274-285
[55]   Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review [J].
Fortelny, Ivan ;
Ujcic, Aleksandra ;
Fambri, Luca ;
Slouf, Miroslav .
FRONTIERS IN MATERIALS, 2019, 6
[56]   Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems [J].
Fortunati, E. ;
Puglia, D. ;
Kenny, J. M. ;
Minhaz-Ul Hague, Md ;
Pracella, M. .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (12) :2742-2751
[57]   Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles [J].
Fortunati, E. ;
Rinaldi, S. ;
Peltzer, M. ;
Bloise, N. ;
Visai, L. ;
Armentano, I. ;
Jimenez, A. ;
Latterini, L. ;
Kenny, J. M. .
CARBOHYDRATE POLYMERS, 2014, 101 :1122-1133
[58]   Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose [J].
Fortunati, E. ;
Armentano, I. ;
Zhou, Q. ;
Puglia, D. ;
Terenzi, A. ;
Berglund, L. A. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2012, 97 (10) :2027-2036
[59]   Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles [J].
Fortunati, E. ;
Armentano, I. ;
Zhou, Q. ;
Iannoni, A. ;
Saino, E. ;
Visai, L. ;
Berglund, L. A. ;
Kenny, J. M. .
CARBOHYDRATE POLYMERS, 2012, 87 (02) :1596-1605
[60]   Flame retarded poly(lactic acid) using POSS-modified cellulose. 2. Effects of intumescing flame retardant formulations on polymer degradation and composite physical properties [J].
Fox, Douglas M. ;
Novy, Melissa ;
Brown, Karlena ;
Zammarano, Mauro ;
Harris, Richard H., Jr. ;
Murariu, Marius ;
McCarthy, Edward D. ;
Seppala, Jonathan E. ;
Gilman, Jeffrey W. .
POLYMER DEGRADATION AND STABILITY, 2014, 106 :54-62