Reduction theory for a rational function field

被引:4
作者
Prasad, A [1 ]
机构
[1] Max Planck Inst Math, D-53072 Bonn, Germany
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2003年 / 113卷 / 02期
关键词
automorphic form; function field;
D O I
10.1007/BF02829764
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a split reductive group over a finite field F-q. Let F = F-q (t) and. let A denote the adeles of F. We show that every double coset in G(F)\G(A)/K has a representative in a maximal split torus of G. Here K is the set of integral adelic points of G. When G ranges over general linear groups this is equivalent to the assertion that any algebraic vector bundle over the projective line is isomorphic to a direct sum of line bundles.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 15 条
[1]  
ANSPACH P, 1995, THESIS U CHICAGO
[2]  
CHEVALLEY C, 1958, SECRETARIAT MATH
[3]  
DEDEKIND R, **NON-TRADITIONAL**
[4]  
EFRAT I, 1991, ENSEIGN MATH, V37, P31
[5]  
GODEMENT R, 1964, SECRETARIAT MATH PAR, V257, P25
[6]   SUR LA CLASSIFICATION DES FIBRES HOLOMORPHES SUR LA SPHERE DE RIEMANN [J].
GROTHENDIECK, A .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :121-138
[7]   CHEVALLEY GROUPS OVER FUNCTION FIELDS AND AUTOMORPHIC FORMS [J].
HARDER, G .
ANNALS OF MATHEMATICS, 1974, 100 (02) :249-306
[8]   MINKOWSKS REDUCTION THEORY OVER FUNCTION FIELDS [J].
HARDER, G .
INVENTIONES MATHEMATICAE, 1969, 7 (01) :33-&
[9]  
Harder G., 1968, INVENT MATH, V6, P107
[10]  
Kaiser C, 2000, J REINE ANGEW MATH, V519, P31