Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity

被引:416
作者
Zeng, Lingyou [1 ]
Sun, Kaian [1 ]
Wang, Xiaobo [1 ]
Liu, Yunqi [1 ]
Pan, Yuan [1 ,2 ]
Liu, Zhi [1 ]
Cao, Dongwei [1 ]
Song, Yue [1 ]
Liu, Sihui [1 ]
Liu, Chenguang [1 ]
机构
[1] China Univ Petr East China, State Key Lab Heavy Oil Proc, Key Lab Catalysis, Qingdao 266580, Peoples R China
[2] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 中国博士后科学基金;
关键词
Water splitting; Nickel sulfides; Nickel phosphides; Heterostructure; 3D-networked material; STABLE BIFUNCTIONAL ELECTROCATALYSTS; EFFICIENT HYDROGEN EVOLUTION; OXYGEN-EVOLUTION; NICKEL SULFIDE; NI FOAM; ENERGY-CONVERSION; NANOPARTICLES; CATALYSTS; NANOSHEETS; ALKALINE;
D O I
10.1016/j.nanoen.2018.06.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploration of highly active and stable noble-metal-free electrocatalysts for hydrogen and oxygen evolution reaction is a challenging task to achieve sustainable production of H-2 through water splitting. Herein, we present the design and synthesis of a novel three-dimensional(3D)-networked heterogeneous nickel phosphide/sulfide electrocatalyst consisting of Ni2P strongly coupled with Ni3S2 in situ grown on Ni foam. Benefiting from the strong interfacial coupling effects between Ni2P and Ni3S2, large surface area, highly conductive Ni foam support, and the unique 3D open configuration, the optimal 3D-networked hybrid electrode exhibits superior electrocatalytic activity with extremely low overpotentials of 80 and 210 mV to deliver a current density of 10 mA cm(-2) for HER and OER in 1.0 M KOH, respectively. Assembled as an electrolyzer for overall water splitting, this electrode delivers an impressive low onset potential of only 1.45 V and gives a current density of 10 mA cm(-2) at a very low cell voltage of 1.50 V, which is dramatically superior to the current state-of-the-art electrocatalysts. In combination with density functional theory (DFT) calculations, this study demonstrates that the strong coupling interactions between Ni2P and Ni3S2 synergistically optimize the electronic structure and tune the hydrogen (or water) adsorption energy, thus significantly enhancing the overall electrochemical water-splitting activity. Our work might shed some new lights on the design and fabrication of efficient and robust three-dimensional hybrid electrode materials for a variety of electrochemical applications.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 78 条
[1]   Interlaced NiS2-MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions [J].
An, Tiance ;
Wang, Yang ;
Tang, Jing ;
Wei, Wei ;
Cui, Xiaoqi ;
Alenizi, Abdullah M. ;
Zhang, Lijuan ;
Zheng, Gengfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13439-13443
[2]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[3]  
[Anonymous], 2015, NAT COMMUN
[4]  
[Anonymous], ANGEW CHEM
[5]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[6]   Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density [J].
Dai, Shuge ;
Zhao, Bote ;
Qu, Chong ;
Chen, Dongchang ;
Dang, Dai ;
Song, Bo ;
Deglee, Ben M. ;
Fu, Jianwei ;
Hu, Chenguo ;
Wong, Ching-Ping ;
Liu, Meilin .
NANO ENERGY, 2017, 33 :522-531
[7]   Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting [J].
Dai, Zhengfei ;
Geng, Hongbo ;
Wang, Jiong ;
Luo, Yubo ;
Li, Bing ;
Zong, Yun ;
Yang, Jun ;
Guo, Yuanyuan ;
Zheng, Yun ;
Wang, Xin ;
Yan, Qingyu .
ACS NANO, 2017, 11 (11) :11031-11040
[8]   Electrical conductivity for warm, dense aluminum plasmas and liquids [J].
Desjarlais, MP ;
Kress, JD ;
Collins, LA .
PHYSICAL REVIEW E, 2002, 66 (02)
[9]   Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction [J].
Dong, Bin ;
Zhao, Xin ;
Han, Guan-Qun ;
Li, Xiao ;
Shang, Xiao ;
Liu, Yan-Ru ;
Hu, Wen-Hui ;
Chai, Yong-Ming ;
Zhao, Hui ;
Liu, Chen-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13499-13508
[10]   Low-Cost Hydrogen-Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates [J].
Esposito, Daniel V. ;
Hunt, Sean T. ;
Stottlemyer, Alan L. ;
Dobson, Kevin D. ;
McCandless, Brian E. ;
Birkmire, Robert W. ;
Chen, Jingguang G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (51) :9859-9862