A weighted and balanced FEM for singularly perturbed reaction-diffusion problems

被引:15
作者
Madden, Niall [1 ]
Stynes, Martin [2 ]
机构
[1] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
[2] Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method; Balanced norm; Quasioptimal; FINITE-ELEMENT METHODS; NORM; CONVERGENCE; EQUATION; MESHES;
D O I
10.1007/s10092-021-00421-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new finite element method is presented for a general class of singularly perturbed reaction-diffusion problems -epsilon(2) Delta u + bu = f posed on bounded domains Omega subset of R-k for k >= 1, with the Dirichlet boundary condition u = 0 on partial derivative Omega, where 0 < epsilon << 1. The method is shown to be quasioptimal (on arbitrary meshes and for arbitrary conforming finite element spaces) with respect to a weighted norm that is known to be balanced when one has a typical decomposition of the unknown solution into smooth and layer components. A robust (i.e., independent of epsilon) almost first-order error bound for a particular FEM comprising piecewise bilinears on a Shishkin mesh is proved in detail for the case where Omega is the unit square in R-2. Numerical results illustrate the performance of the method.
引用
收藏
页数:16
相关论文
共 23 条
[1]   A first-order system Petrov-Galerkin discretization for a reaction-diffusion problem on a fitted mesh [J].
Adler, James ;
MacLachlan, Scott ;
Madden, Niall .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (03) :1281-1309
[2]   First-Order System Least Squares Finite-Elements for Singularly Perturbed Reaction-Diffusion Equations [J].
Adler, James H. ;
MacLachlan, Scott ;
Madden, Niall .
LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 :3-14
[3]  
APEL T, 1999, ANISOTROPIC FINITE E
[4]   Numerical solution of a two-dimensional singularly perturbed reaction-diffusion problem with discontinuous coefficients [J].
Brayanov, Iliya A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) :631-643
[5]   A DUAL FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM [J].
Cai, Zhiqiang ;
Ku, Jaeun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) :1654-1673
[6]   A parameter robust numerical method for a two dimensional reaction-diffusion problem [J].
Clavero, C ;
Gracia, JL ;
O'Riordan, E .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1743-1758
[7]  
de Falco C, 2010, INT J NUMER ANAL MOD, V7, P444
[8]  
Evans L.C, 2010, AM MATH SOC
[9]   Error estimation in a balanced norm for a convection-diffusion problem with two different boundary layers [J].
Franz, Sebastian ;
Roos, Hans-Goerg .
CALCOLO, 2014, 51 (03) :423-440
[10]  
Gilbarg D., Elliptic Partial Differential Equations of Second Order. Classics in Mathematics