Realized stochastic volatility with general asymmetry and long memory

被引:26
作者
Asai, Manabu [1 ]
Chang, Chia-Lin [3 ]
McAleer, Michael [2 ,4 ,5 ,6 ,7 ]
机构
[1] Soka Univ, Fac Econ, Hachioji, Tokyo, Japan
[2] Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW, Australia
[3] Natl Chung Hsing Univ, Dept Finance, Dept Appl Econ, Taichung, Taiwan
[4] Natl Tsing Hua Univ, Dept Quantitat Finance, Hsinchu, Taiwan
[5] Erasmus Univ, Erasmus Sch Econ, Econometr Inst, Rotterdam, Netherlands
[6] Univ Complutense Madrid, Dept Quantitat Econ, Madrid, Spain
[7] Yokohama Natl Univ, Inst Adv Sci, Yokohama, Kanagawa, Japan
基金
日本学术振兴会; 澳大利亚研究理事会;
关键词
Stochastic volatility; Realized measure; Long memory; Asymmetry; Whittle likelihood; Asymptotic distribution; TIME-SERIES; STATISTICAL-INFERENCE; MODELS; LEVERAGE; CAUSALITY; RETURNS; OPTIONS;
D O I
10.1016/j.jeconom.2017.05.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper develops a novel realized stochastic volatility model of asset returns and realized volatility that incorporates general asymmetry and long memory (hereafter the RSV-GALM model). The contribution of the paper ties in with Robert Basmann's seminal work in terms of the estimation of highly non-linear model specifications (Basmann, 1988), especially for specifying causal effects from returns to future volatility. This paper discusses asymptotic results of a Whittle likelihood estimator for the RSV-GALM model and a test for general asymmetry, and analyzes the finite sample properties. The paper also develops an approach to obtain volatility estimates and out-of-sample forecasts. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The paper compares the forecasting performance of the new model with a realized conditional volatility model. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:202 / 212
页数:11
相关论文
共 58 条
[1]  
Abramovits M., 1970, HDB MATH FUNCTIONS
[2]   Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data [J].
Ait-Sahalia, Yacine ;
Jacod, Jean .
JOURNAL OF ECONOMIC LITERATURE, 2012, 50 (04) :1007-1050
[3]   The distribution of realized exchange rate volatility [J].
Andersen, TG ;
Bollerslev, T ;
Diebold, FX ;
Labys, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :42-55
[4]   Modeling and forecasting realized volatility [J].
Andersen, TG ;
Bollerslev, T ;
Diebold, FX ;
Labys, P .
ECONOMETRICA, 2003, 71 (02) :579-625
[5]  
Asai M., 2017, ECONOMETRIC REV
[6]   Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models [J].
Asai, Manabu .
JOURNAL OF EMPIRICAL FINANCE, 2008, 15 (02) :332-341
[7]   Asymmetry and Long Memory in Volatility Modeling [J].
Asai, Manabu ;
McAleer, Michael ;
Medeiros, Marcelo C. .
JOURNAL OF FINANCIAL ECONOMETRICS, 2012, 10 (03) :495-512
[8]   Modelling and forecasting noisy realized volatility [J].
Asai, Manabu ;
McAleer, Michael ;
Medeiros, Marcelo C. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (01) :217-230
[9]   Alternative Asymmetric Stochastic Volatility Models [J].
Asai, Manabu ;
McAleer, Michael .
ECONOMETRIC REVIEWS, 2011, 30 (05) :548-564
[10]   Multivariate stochastic volatility, leverage and news impact surfaces [J].
Asai, Manabu ;
McAleer, Michael .
ECONOMETRICS JOURNAL, 2009, 12 (02) :292-309