On the role of Al/Nb in the SCC of AFA stainless steels in supercritical CO2

被引:11
作者
Cong, Shuo [1 ]
Ma, Zhaodandan [2 ]
Liu, Zhu [1 ]
Duan, Zhengang [2 ]
Zhou, Zhangjian [3 ]
Zhang, Lefu [1 ]
Guo, Xianglong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Nucl Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Sci & Technol Reactor Fuel & Mat Lab Nucl Power I, Chengdu 610041, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
STRESS-CORROSION CRACKING; FERRITIC-MARTENSITIC STEELS; HEAT-RESISTANT STEELS; CARBON-DIOXIDE; DEGREES-C; OXIDATION RESISTANCE; CREEP-RESISTANT; SCALE FORMATION; CHROMIA SCALES; COLD WORK;
D O I
10.1038/s41529-022-00258-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
SCC of a series of AFA stainless steels with different Al and Nb contents were studied in supercritical CO2 by SSRT. The results show that Nb element plays a precipitation strengthening on the mechanical properties, while it shows few effects on the corrosion properties. The surface oxide film of the Al-free material only consisted of amorphous Cr2O3 and Cr-rich spinel. With the addition of Al, the Al2O3 layers are formed and significantly decreases the element diffusion, thus inhibiting the initiation of SCC. Fe3O4 fills the interior of cracks of both Al-free and Al-containing materials. The Al2O3 layer is formed at the crack tip of Al-containing materials. Because the matrix grains are large, the protective Al2O3 layer can only be formed at the crack tip, which cannot completely hinder the outward diffusion of ions on the crack walls and its protective effect on the crack propagation is limited.
引用
收藏
页数:13
相关论文
共 81 条
[1]   Hot tensile properties of CoCrFeMnNi(NbC) compositionally complex alloys [J].
Abbasi, Erfan ;
Dehghani, Kamran .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
[2]  
Andresen PL, 2011, STRESS CORROSION CRACKING: THEORY AND PRACTICE, P651
[3]   The development of alumina-forming austenitic stainless steels for high-temperature structural use [J].
Brady, M. P. ;
Yamamoto, Y. ;
Santella, M. L. ;
Maziasz, P. J. ;
Pint, B. A. ;
Liu, C. T. ;
Lu, Z. P. ;
Bei, H. .
JOM, 2008, 60 (07) :12-18
[4]   Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels [J].
Brady, M. P. ;
Yamamoto, Y. ;
Santella, M. L. ;
Pint, B. A. .
SCRIPTA MATERIALIA, 2007, 57 (12) :1117-1120
[5]   Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance [J].
Brady, M. P. ;
Magee, J. ;
Yamamoto, Y. ;
Helmick, D. ;
Wang, L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 :101-115
[6]   Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor [J].
Brady, M. P. ;
Unocic, K. A. ;
Lance, M. J. ;
Santella, M. L. ;
Yamamoto, Y. ;
Walker, L. R. .
OXIDATION OF METALS, 2011, 75 (5-6) :337-357
[7]   Composition, Microstructure, and Water Vapor Effects on Internal/External Oxidation of Alumina-Forming Austenitic Stainless Steels [J].
Brady, M. P. ;
Yamamoto, Y. ;
Santella, M. L. ;
Walker, L. R. .
OXIDATION OF METALS, 2009, 72 (5-6) :311-333
[8]   THE OXIDATION OF NIAL .3. INTERNAL AND INTERGRANULAR OXIDATION [J].
BRUMM, MW ;
GRABKE, HJ ;
WAGEMANN, B .
CORROSION SCIENCE, 1994, 36 (01) :37-53
[9]   Corrosion of austenitic alloys in high temperature supercritical carbon dioxide [J].
Cao, G. ;
Firouzdor, V. ;
Sridharan, K. ;
Anderson, M. ;
Allen, T. R. .
CORROSION SCIENCE, 2012, 60 :246-255
[10]   Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 °C [J].
Chen, Hongsheng ;
Kim, Sung Hwan ;
Kim, Chaewon ;
Chen, Junjie ;
Jang, Changheui .
CORROSION SCIENCE, 2019, 156 :16-31