Efficient effective permittivity treatment for the 2D-FDTD simulation of photonic crystals

被引:16
作者
Jalali, T. [1 ]
Rauscher, K.
Mohammadi, A.
Erni, D.
Hafner, Ch.
Baechtold, W.
Shoushtari, M. Z.
机构
[1] ETH, Commun Photon Grp, Lab Electromagnet Fields & Microwave Elect, CH-8092 Zurich, Switzerland
[2] ETH, Computat Opt Grp, Lab Electromagnet Fields & Microwave Elect, CH-8092 Zurich, Switzerland
[3] Univ Duisburg Essen, Fac Engn, ATE, D-47048 Duisburg, Germany
[4] Shahid Chamran Univ, Dept Phys, Ahvaz, Iran
[5] Persian Gulf Univ, Dept Phys, Bushehr, Iran
[6] Eurospace GmbH, D-60313 Frankfurt, Germany
关键词
photonic crystal; photonic crystal waveguide; FDTD method;
D O I
10.1166/jctn.2007.029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we present an efficient effective permittivity treatment for the two-dimensional Finite-Difference Time-Domain (2D-FDTD) method that can be applied to dielectric interfaces. Various issues related to simulation arrangements are discussed based on the 60 degrees photonic crystal (PhC) waveguide bend as a test case. The transmission, obtained numerically, agrees very well with other two-dimensional simulation methods, namely the finite-element method (2D-FEM) and the 2D multiple multipole program (2D-MMP). Compared to other FDTD schemes, such as staircasing and the volume averaging method, our model performs faster and provides more accurate results for the dielectric interface.
引用
收藏
页码:644 / 648
页数:5
相关论文
共 10 条
[1]   The second-order condition for the dielectric interface orthogonal to the Yee-lattice axis in the FDTD scheme [J].
Hirono, T ;
Shibata, Y ;
Lui, WW ;
Seki, S ;
Yoshikuni, Y .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (09) :359-361
[2]   Effective permittivities for second-order accurate FDTD equations at dielectric interfaces [J].
Hwang, KP ;
Cangellaris, AC .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (04) :158-160
[3]   FDTD analysis of dielectric resonators with curved surfaces [J].
Kaneda, N ;
Houshmand, B ;
Itoh, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (09) :1645-1649
[4]   THE EFFICIENT MODELING OF THIN MATERIAL SHEETS IN THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD [J].
MALONEY, JG ;
SMITH, GS .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (03) :323-330
[5]   Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides [J].
Mekis, A ;
Fan, SH ;
Joannopoulos, JD .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1999, 9 (12) :502-504
[6]   Contour-path effective permittivities for the two-dimensional finite-difference time-domain method [J].
Mohammadi, A ;
Nadgaran, H ;
Agio, M .
OPTICS EXPRESS, 2005, 13 (25) :10367-10381
[7]  
MORENO E, 2002, PHYS REV E, V66, P3
[8]  
RAUSCHER K, 2004, PROG EEC RES SYM PIE, V43, P25
[9]  
Taflove A., 2005, Computational Electrodynamics: The Finite-Difference Time-Domain Method, V3rd
[10]   Studying 120° PBG waveguide bend using FDTD [J].
Uusitupa, T ;
Kärkkäinen, K ;
Nikoskinen, K .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 39 (04) :326-333