Minimal rates of entropy convergence for rank one systems

被引:3
作者
Blume, F [1 ]
机构
[1] John Brown Univ, Dept Math, Siloam Springs, AR 72761 USA
关键词
entropy; convergence rates; measure-preserving transformation; rank one;
D O I
10.3934/dcds.2000.6.773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If (X,T) is a rank one system and g a positive concave function on (0,infinity) such that g(x)(2)/x(3) is integrable, then lim sup(n-->infinity) H(alpha (n-1)(0))/g(log(2) n) = infinity, for all partitions alpha of X into two sets with lim(n-->infinity) max{mu>(*) over bar * (A) \ A is an element of alpha (n-1)(0)} =0.
引用
收藏
页码:773 / 796
页数:24
相关论文
共 4 条
[1]  
Ash R. B., 1972, REAL ANAL PROBABILIT, DOI DOI 10.1016/C2013-0-06164-6
[2]   Possible rates of entropy convergence [J].
Blume, F .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :45-70
[3]  
Blume F., 1995, THESIS U N CAROLINA
[4]  
FERENCZI S, 1990, THESIS U AIX MARSEIL