The value distribution of additive arithmetic functions on a line

被引:4
作者
Elliott, P. D. T. A. [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2010年 / 642卷
关键词
MULTIPLICATIVE FUNCTIONS; PROGRESSIONS; NUMBER; MODULI;
D O I
10.1515/CRELLE.2010.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A stability study of the correlations of multiplicative arithmetic functions yields necessary and sufficient conditions that the frequency distributions naturally attached to sums of additive arithmetic functions f(1)(n) + f(2)(N - n) on the integers not exceeding N possess a limiting distribution as N traverses the positive integers, or the positive primes. Moreover, the functions fj may be allowed a wide class of unbounded renormalizations.
引用
收藏
页码:57 / 108
页数:52
相关论文
共 35 条
[1]  
DAVENPORT H., 1937, Q. J. Math, P313, DOI [10.1093/qmath/os-8.1.313, DOI 10.1093/QMATH/OS-8.1.313]
[2]  
ELLIOTT PDT, 1992, J FS U TOKYO 1A, V39, P379
[3]  
ELLIOTT PDT, 1980, GRUNDL MATH WISS, V240
[4]  
ELLIOTT PDT, 1994, AM MATH SOC MEM, V112
[5]  
ELLIOTT PDT, 1990, MULTIPLICATIVE FUNCT, V3, P177
[6]  
ELLIOTT PDT, 1985, GRUNDL MATH WISS, V272
[7]  
ELLIOTT PDT, 1996, CAMBRIDGE TRACTS MAT, V122
[8]  
ELLIOTT PDT, 1991, J FS U TOKYO 1A, V38, P149
[9]  
ELLIOTT PDT, 1979, GRUNDL MATH WISS, V239
[10]  
ELLIOTT PDTA, 1989, P K NED AKAD A MATH, V92, P409