Particle-in-cell δf gyrokinetic simulations of the microtearing mode

被引:19
|
作者
Chowdhury, J. [1 ]
Chen, Yang [1 ]
Wan, Weigang [1 ]
Parker, Scott E. [1 ]
Guttenfelder, W. [2 ]
Canik, J. M. [3 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
LINEAR-STABILITY; KINETIC-THEORY; TEARING MODES; MICROSTABILITY; COLLISIONLESS; INSTABILITY; TURBULENCE;
D O I
10.1063/1.4940333
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The linear stability properties of the microtearing mode are investigated in the edge and core regimes of the National Spherical Torus Experiment (NSTX) using the particle-in-cell method based gyrokinetic code GEM. The dependence of the mode on various equilibrium quantities in both regions is compared. While the microtearing mode in the core depends upon the electron-ion collisions, in the edge region, it is found to be weakly dependent on the collisions and exists even when the collision frequency is zero. The electrostatic potential is non-negligible in each of the cases. It plays opposite roles in the core and edge of NSTX. While the microtearing mode is partially stabilized by the electrostatic potential in the core, it has substantial destabilizing effect in the edge. In addition to the spherical tokamak, we also study the microtearing mode for parameters relevant to the core of a standard tokamak. The fundamental characteristics of the mode remain the same; however, the electrostatic potential in this case is destabilizing as opposed to the core of NSTX. The velocity dependence of the collision frequency, which is crucial for the mode to grow in slab calculations, is not required to destabilize the mode in toroidal devices. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Particle-in-cell simulations with kinetic electrons
    Lewandowski, JLV
    JOURNAL OF SCIENTIFIC COMPUTING, 2004, 21 (02) : 173 - 192
  • [42] Particle-in-Cell Simulations with Kinetic Electrons
    J. L. V. Lewandowski
    Journal of Scientific Computing, 2004, 21 : 173 - 192
  • [43] Particle-in-Cell Simulations for Ion Thrusters
    Schneider, R.
    Matyash, K.
    Kalentev, O.
    Taccogna, F.
    Koch, N.
    Schirra, M.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2009, 49 (09) : 655 - 661
  • [44] Interactive visualization of particle-in-cell simulations
    Ljung, P
    Dieckmann, ME
    Andersson, N
    Ynnerman, A
    VISUALIZATION 2000, PROCEEDINGS, 2000, : 469 - 472
  • [45] Particle-in-cell simulations of an inverted sheath
    Gomez, I
    Valic, A.
    Gyergyek, T.
    Costea, S.
    Kovacic, J.
    21ST INTERNATIONAL SUMMER SCHOOL ON VACUUM, ELECTRON AND ION TECHNOLOGIES, 2020, 1492
  • [46] Whistler turbulence: Particle-in-cell simulations
    Saito, Shinji
    Gary, S. Peter
    Li, Hui
    Narita, Yasuhito
    PHYSICS OF PLASMAS, 2008, 15 (10)
  • [47] Particle-in-cell simulations for fast ignition
    Ren, C.
    Tonge, J.
    Li, G.
    Fiuza, F.
    Fonseca, R. A.
    May, J.
    Mori, W. B.
    Silva, L. O.
    Wang, T. L.
    Yan, R.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [48] Particle-in-cell simulations of particle energization from low Mach number fast mode shocks
    Park, Jaehong
    Workman, Jared C.
    Blackman, Eric G.
    Ren, Chuang
    Siller, Robert
    PHYSICS OF PLASMAS, 2012, 19 (06)
  • [49] Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers
    Wang, Bei
    Ethier, Stephane
    Tang, William
    Ibrahim, Khaled Z.
    Madduri, Kamesh
    Williams, Samuel
    Oliker, Leonid
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (01): : 169 - 188
  • [50] Hierarchy of second order gyrokinetic Hamiltonian models for particle-in-cell codes
    Tronko, N.
    Bottino, A.
    Chandre, C.
    Sonnendruecker, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (06)