A Quantum-Behaved Particle Swarm Optimization With Diversity-Guided Mutation for the Design of Two-Dimensional IIR Digital Filters

被引:46
作者
Sun, Jun [1 ]
Fang, Wei [1 ]
Xu, Wenbo [1 ]
机构
[1] Jiangnan Univ, Sch Informat Technol, Wuxi 214122, Peoples R China
关键词
Digital IIR filters; heuristics; multidimensional digital filters; particle swarm optimization (PSO); RECURSIVE FILTERS;
D O I
10.1109/TCSII.2009.2038514
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief proposes quantum-behaved particle swarm optimization with diversity-guided mutation (QPSO-DGM) to solve the problem of designing the optimal 2-D zero-phase IIR digital filters. The new method integrates a diversity control strategy into QPSO to guide the particle's search and thus improve the capabilities of exploration. Numerical results demonstrate that the design approach based on QPSO-DGM can obtain better digital IIR filters than the existing methods.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 10 条
[1]  
Das S, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P2157
[2]   Optimization of two-dimensional IIR filters with nonseparable and separable denominator [J].
Dumitrescu, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (05) :1768-1777
[3]   Evolutionary design of 2-dimensional recursive filters via the computer language GENETICA [J].
Gonos, IF ;
Virirakis, LI ;
Mastorakis, NE ;
Swamy, MNS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (04) :254-258
[4]  
Krusienski D. J., 2005, IEEE Circuits and Systems Magazine, V5, P8, DOI 10.1109/MCAS.2005.1405897
[5]   A weighted least-squares method for the design of stable 1-D and 2-D IIR digital filters [J].
Lu, WS ;
Pei, SC ;
Tseng, CC .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (01) :1-10
[6]   Design of two-dimensional recursive filters using genetic algorithms [J].
Mastorakis, NE ;
Gonos, IF ;
Swamy, MNS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (05) :634-639
[7]   Design of two-dimensional recursive filters by using neural networks [J].
Mladenov, VM ;
Mastorakis, NE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (03) :585-590
[8]  
Shi Y., 1999, P 1999 C EV COMP WAS, VVolume 3, P1945
[9]  
Sun J, 2004, CONF CYBERN INTELL S, P111
[10]  
Ursem R. K., 2002, Parallel Problem Solving from Nature - PPSN VII. 7th International Conference. Proceedings (Lecture Notes in Computer Science Vol.2439), P462