Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Large-Area Fabrication

被引:90
作者
Zhao, Qian [1 ]
Han, Rui [2 ]
Marshall, Ashley R. [3 ]
Wang, Shuo [1 ]
Wieliczka, Brian M. [4 ]
Ni, Jian [2 ]
Zhang, Jianjun [2 ]
Yuan, Jianyu [5 ]
Luther, Joseph M. [4 ]
Hazarika, Abhijit [6 ]
Li, Guo-Ran [1 ]
机构
[1] Nankai Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Nankai Univ, Coll Elect Informat & Opt Engn, Tianjin 300350, Peoples R China
[3] Univ Oxford, Dept Phys, Condensed Matter Phys, Parks Rd, Oxford OX1 3PU, England
[4] Natl Renewable Energy Lab, Golden, CO 80401 USA
[5] Soochow Univ, Inst Funct Nano & Soft Mat, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[6] CSIR Indian Inst Chem Technol, Polymers & Funct Mat Div, Uppal Rd, Hyderabad 500007, Andhra Pradesh, India
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
colloidal quantum dots; deposition technique; perovskites; scale-up; solar cells; LIGHT-EMITTING-DIODES; MULTIPLE EXCITON GENERATION; HALIDE DOUBLE PEROVSKITE; LEAD-FREE; HIGH-EFFICIENCY; HIGHLY EFFICIENT; ALPHA-CSPBI3; PEROVSKITE; ELECTRICAL-PROPERTIES; LIGAND-EXCHANGE; NANOCRYSTALS;
D O I
10.1002/adma.202107888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidally grown nanosized semiconductors yield extremely high-quality optoelectronic materials. Many examples have pointed to near perfect photoluminescence quantum yields, allowing for technology-leading materials such as high purity color centers in display technology. Furthermore, because of high chemical yield, and improved understanding of the surfaces, these materials, particularly colloidal quantum dots (QDs) can also be ideal candidates for other optoelectronic applications. Given the urgent necessity toward carbon neutrality, electricity from solar photovoltaics will play a large role in the power generation sector. QDs are developed and shown dramatic improvements over the past 15 years as photoactive materials in photovoltaics with various innovative deposition properties which can lead to exceptionally low-cost and high-performance devices. Once the key issues related to charge transport in optically thick arrays are addressed, QD-based photovoltaic technology can become a better candidate for practical application. In this article, the authors show how the possibilities of different deposition techniques can bring QD-based solar cells to the industrial level and discuss the challenges for perovskite QD solar cells in particular, to achieve large-area fabrication for further advancing technology to solve pivotal energy and environmental issues.
引用
收藏
页数:29
相关论文
共 273 条
[1]   Self-Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow [J].
Abdel-Latif, Kameel ;
Epps, Robert W. ;
Bateni, Fazel ;
Han, Suyong ;
Reyes, Kristofer G. ;
Abolhasani, Milad .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (02)
[2]   Flow Synthesis of Metal Halide Perovskite Quantum Dots: From Rapid Parameter Space Mapping to AI-Guided Modular Manufacturing [J].
Abdel-Latif, Kameel ;
Bateni, Fazel ;
Crouse, Steven ;
Abolhasani, Milad .
MATTER, 2020, 3 (04) :1053-1086
[3]   Nanotoxicity: a challenge for future medicine [J].
Akcan, Ramazan ;
Aydogan, Halit Canberk ;
Yildirim, Mahmut Serif ;
Tastekin, Burak ;
Saglam, Necdet .
TURKISH JOURNAL OF MEDICAL SCIENCES, 2020, 50 (04) :1180-1196
[4]   Spray-deposited CuInSe2 nanocrystal photovoltaics [J].
Akhavan, Vahid A. ;
Goodfellow, Brian W. ;
Panthani, Matthew G. ;
Reid, Dariya K. ;
Hellebusch, Danny J. ;
Adachi, Takuji ;
Korgel, Brian A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (10) :1600-1606
[5]   Strongly emissive perovskite nanocrystal inks for high-voltage solar cells [J].
Akkerman, Quinten A. ;
Gandini, Marina ;
Di Stasio, Francesco ;
Rastogi, Prachi ;
Palazon, Francisco ;
Bertoni, Giovanni ;
Ball, James M. ;
Prato, Mirko ;
Petrozza, Annamaria ;
Manna, Liberato .
NATURE ENERGY, 2017, 2 (02)
[6]   Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes [J].
An, Jincheng ;
Yang, Xichuan ;
Wang, Weihan ;
Li, Jiajia ;
Wang, Haoxin ;
Yu, Ze ;
Gong, Chenghuan ;
Wang, Xiuna ;
Sun, Licheng .
SOLAR ENERGY, 2017, 158 :28-33
[7]  
[Anonymous], 2007, JAMA
[8]   Solid-state-ligand-exchange free quantum dot ink-based solar cells with an efficiency of 10.9% [J].
Aqoma, Havid ;
Jang, Sung-Yeon .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1603-1609
[9]   High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange [J].
Aqoma, Havid ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Lee, Eun-Hye ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ADVANCED MATERIALS, 2017, 29 (19)
[10]   Simultaneous Improvement of Charge Generation and Extraction in Colloidal Quantum Dot Photovoltaics Through Optical Management [J].
Aqoma, Havid ;
Barange, Nilesh ;
Ryu, Ilhwan ;
Yim, Sanggyu ;
Do, Young Rag ;
Cho, Shinuk ;
Ko, Doo-Hyun ;
Jang, Sung-Yeon .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (39) :6241-6249