Heating of trapped ultracold atoms by collapse dynamics

被引:31
作者
Laloe, Franck [1 ,2 ]
Mullin, William J. [3 ]
Pearle, Philip [4 ]
机构
[1] UPMC, Associe ENS, Lab Kastler Brossel, F-75005 Paris, France
[2] CNRS, F-75005 Paris, France
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 05期
关键词
WAVE-FUNCTION COLLAPSE; SPONTANEOUS LOCALIZATION; SPONTANEOUS RADIATION; MACROSCOPIC SYSTEMS; UNIFIED DYNAMICS; GAS; MODELS; CONDENSATION; COLLISIONS; REDUCTION;
D O I
10.1103/PhysRevA.90.052119
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The continuous spontaneous localization (CSL) theory alters the Schrodinger equation. It describes wave-function collapse as a dynamical process instead of an ill-defined postulate, thereby providing macroscopic uniqueness and solving the so-called measurement problem of standard quantum theory. CSL contains a parameter lambda giving the collapse rate of an isolated nucleon in a superposition of two spatially separated states and, more generally, characterizing the collapse time for any physical situation. CSL is experimentally testable, since it predicts some behavior different from that predicted by standard quantum theory. One example is the narrowing of wave functions, which results in energy imparted to particles. Here we consider energy given to trapped ultracold atoms. Since these are the coldest samples under experimental investigation, it is worth inquiring how they are affected by the CSL heating mechanism. We examine the CSL heating of a Bose-Einstein condensate (BEC) in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically trapped cesium BECs, we present an energy audit for known heating and loss mechanisms. The result provides an upper limit on CSL heating and thereby an upper limit on the parameter lambda. We obtain. lambda less than or similar to 1(+/- 1) x 10(-7) s(-1).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Functional integral for ultracold fermionic atoms
    Diehl, S.
    Wetterich, C.
    NUCLEAR PHYSICS B, 2007, 770 (03) : 206 - 272
  • [32] Exotic Chemistry with Ultracold Rydberg Atoms
    Sassmannshausen, Heiner
    Deiglmayr, Johannes
    Merkt, Frederic
    CHIMIA, 2016, 70 (04) : 263 - 267
  • [33] Narrowing the Parameter Space of Collapse Models with Ultracold Layered Force Sensors
    Vinante, A.
    Carlesso, M.
    Bassi, A.
    Chiasera, A.
    Varas, S.
    Falferi, P.
    Margesin, B.
    Mezzena, R.
    Ulbricht, H.
    PHYSICAL REVIEW LETTERS, 2020, 125 (10)
  • [34] Two ultracold atoms in a quasi-two-dimensional box confinement
    Yang, Fan
    Du, Ruijie
    Qi, Ran
    Zhang, Peng
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [35] The 'unitarity problem' of Higgs inflation in the light of collapse dynamics
    Das, Suratna
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (09):
  • [36] Cooling and entangling ultracold atoms in optical lattices
    Yang, Bing
    Sun, Hui
    Huang, Chun-Jiong
    Wang, Han-Yi
    Deng, Youjin
    Dai, Han-Ning
    Yuan, Zhen-Sheng
    Pan, Jian-Wei
    SCIENCE, 2020, 369 (6503) : 550 - +
  • [37] Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms
    Jo, Gyu-Boong
    Lee, Ye-Ryoung
    Choi, Jae-Hoon
    Christensen, Caleb A.
    Kim, Tony H.
    Thywissen, Joseph H.
    Pritchard, David E.
    Ketterle, Wolfgang
    SCIENCE, 2009, 325 (5947) : 1521 - 1524
  • [38] Modeling sympathetic cooling of molecules by ultracold atoms
    Lim, Jongseok
    Frye, Matthew D.
    Hutson, Jeremy M.
    Tarbutt, M. R.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [39] Precision measurement and frequency metrology with ultracold atoms
    Zhang, Xibo
    Ye, Jun
    NATIONAL SCIENCE REVIEW, 2016, 3 (02) : 189 - 200
  • [40] Synthetic gauge potentials for ultracold neutral atoms
    Lin, Yu-Ju
    Spielman, I. B.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (18)