A generalization of a Hall theorem

被引:42
作者
Skiba, Alexander N. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Gomel 246019, BELARUS
关键词
Finite group; sigma-group; sigma-Hall subgroup; sigma-subnormal subgroup; sigma-soluble group; FINITE; SUBGROUPS;
D O I
10.1142/S0219498816500857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma = {sigma(i) vertical bar i is an element of I} be some partition of the set P of all primes, that is, P = boolean OR(i is an element of I)sigma(i) and sigma(i) boolean AND sigma(j) = circle divide for all i not equal j. We say that a finite group G is sigma-soluble if every chief factor H/K of G is a sigma(i)-group for some i = i(H/K) is an element of I. We give some characterizations of finite sigma-soluble groups.
引用
收藏
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1968, Finite Groups
[2]  
Ballester-Bolinches A., 2006, Classes of Finite Groups
[3]  
Gritsuk DV, 2012, EURASIAN MATH J, V3, P129
[4]  
Guo WB, 1996, SIBERIAN MATH J+, V37, P253
[5]   X-semipermutable subgroups of finite groups [J].
Guo, Wenbin ;
Shum, K. P. ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2007, 315 (01) :31-41
[6]   Finite groups with permutable complete Wielandt sets of subgroups [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF GROUP THEORY, 2015, 18 (02) :191-200
[7]  
Huppert B., 1967, Grund. Math. Wiss., V134
[8]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169
[10]  
Lennox JC., 1987, Subnormal Subgroups of Groups