Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity

被引:26
作者
Duan, Shanshan [1 ]
Jin, Hongyun [1 ]
Yu, Junxi [2 ,3 ]
Esfahani, Ehsan Nasr [4 ]
Yang, Bing [5 ]
Liu, Jiale [1 ]
Ren, Yazhou [1 ]
Chen, Ying [1 ]
Lu, Luhua [1 ]
Tian, Xiaocong [1 ]
Hou, Shuen [1 ]
Li, Jiangyu [2 ,4 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Peoples R China
[3] Xiangtan Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Peoples R China
[4] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[5] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Solid state electrolytes; Li1.4Al0.4Ti1.6(PO4)(3); Non-equilibrium microstructure; Spark plasma sintering; SOLID-ELECTROLYTE; CRYSTALLIZATION; TRANSPORT;
D O I
10.1016/j.nanoen.2018.06.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In solid-state electrolytes, the large resistance at grain boundaries remains the bottleneck for high ionic conductivity. Here we develop an alternative and somewhat counterintuitive strategy to enhance their ionic conductivity via non-equilibrium microstructure. Using Li1.4Al0.4Ti1.6(PO4)(3) as an example, we demonstrate that semi-crystalline interphase between well crystallized ceramic phase and amorphous glass phase can be induced by spark plasma sintering, resulting in total ionic conductivity of 1.3 x 10(-3) S cm(-1) without any doping, which is 2 orders of magnitude higher than that derived by the conventional method. It is further demonstrated that the non-equilibrium structure is stable in ambient condition, yet can be converted into equilibrium structure by annealing with higher crystallinity but much lower ionic conductivity, proving that the non-equilibrium structure is indeed the key to the high performance. This opens door for its applications in electric vehicles, and the strategy is applicable to other ionic systems as well.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 47 条
[11]   Crystallization Kinetics of Superionic Conductive Al(B, La)- Incorporated LiTi2(PO4)3 Glass-Ceramics [J].
Chen, Hongping ;
Tao, Haizheng ;
Wu, Qide ;
Zhao, Xiujian .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (03) :801-805
[12]   Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy [J].
Chen, Qian Nately ;
Liu, Yanyi ;
Liu, Yuanming ;
Xie, Shuhong ;
Cao, Guozhong ;
Li, Jiangyu .
APPLIED PHYSICS LETTERS, 2012, 101 (06)
[13]   Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution [J].
Chen, Shichuan ;
Kang, Zhixiong ;
Hu, Xin ;
Zhang, Xiaodong ;
Wang, Hui ;
Xie, Junfeng ;
Zheng, XuSheng ;
Yan, Wensheng ;
Pan, Bicai ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[14]   Evaluation of the micro-hardness and fracture toughness of amorphous and partially crystallized 3CaO•P2O5-SiO2-MgO bioglasses [J].
Daguano, Juliana K. M. F. ;
Suzuki, Paulo A. ;
Strecker, Kurt ;
Fernandes, Maria H. F. V. ;
Santos, Claudinei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 533 :26-32
[15]   Grain Boundary Complexions in Ceramics and Metals: An Overview [J].
Dillon, Shen J. ;
Harmer, Martin P. ;
Luo, Jian .
JOM, 2009, 61 (12) :38-44
[16]   Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes [J].
Francisco, Brian E. ;
Stoldt, Conrad R. ;
M'Peko, Jean-Claude .
CHEMISTRY OF MATERIALS, 2014, 26 (16) :4741-4749
[17]   Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties [J].
Gellert, Michael ;
Gries, Katharina I. ;
Yada, Chihiro ;
Rosciano, Fabio ;
Volz, Kerstin ;
Roling, Bernhard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (43) :22675-22678
[18]   Ultra-thin all-solid-state micro-supercapacitors with exceptional performance and device flexibility [J].
Goehlert, Theresia ;
Siles, Pablo F. ;
Paessler, Tom ;
Sommer, Robert ;
Baunack, Stefan ;
Oswald, Steffen ;
Schmidt, Oliver G. .
NANO ENERGY, 2017, 33 :387-392
[19]   Li0.6[Li0.2Sn0.8S2] - a layered lithium superionic conductor [J].
Holzmann, T. ;
Schoop, L. M. ;
Ali, M. N. ;
Moudrakovski, I. ;
Gregori, G. ;
Maier, J. ;
Cava, R. J. ;
Lotsch, B. V. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (08) :2578-2585
[20]   NASICON-Structured Materials for Energy Storage [J].
Jian, Zelang ;
Hu, Yong-Sheng ;
Ji, Xiulei ;
Chen, Wen .
ADVANCED MATERIALS, 2017, 29 (20)