Annealing-induced change in quantum dot chain formation mechanism

被引:3
作者
Park, Tyler D. [1 ]
Colton, John S. [1 ]
Farrer, Jeffrey K. [1 ]
Yang, Haeyeon [2 ]
Kim, Dong Jun [3 ]
机构
[1] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[2] South Dakota Sch Mines & Technol, Dept Nanosci & Nanoengn, Rapid City, SD 57701 USA
[3] IPG Photon Corp, Oxford, MA 01540 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
GROWTH; TRANSITION; PHOTOLUMINESCENCE; ISLANDS; INGAAS; SHAPE;
D O I
10.1063/1.4905053
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460 degrees C, 480 degrees C, and 500 degrees C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460 degrees C and 480 degrees C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500 degrees C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier. (C) 2014 Author(s).
引用
收藏
页数:9
相关论文
共 33 条
[1]   Combined tripod polishing and fib method for preparing semiconductor plan view specimens [J].
Anderson, R ;
Klepeis, SJ .
SPECIMEN PREPARATION FOR TRANSMISSION ELECTRON MICROSCOPY OF MATERIALS IV, 1997, 480 :187-192
[2]   Quantum dot opto-electronic devices [J].
Bhattacharya, P ;
Ghosh, S ;
Stiff-Roberts, AD .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :1-40
[3]   Surface compositional gradients of InAs/GaAs quantum dots [J].
Biasiol, G ;
Heun, S ;
Golinelli, GB ;
Locatelli, A ;
Mentes, TO ;
Guo, FZ ;
Hofer, C ;
Teichert, C ;
Sorba, L .
APPLIED PHYSICS LETTERS, 2005, 87 (22) :1-3
[4]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[5]   Carrier capture dynamics of single InGaAs/GaAs quantum-dot layers [J].
Chauhan, K. N. ;
Riffe, D. M. ;
Everett, E. A. ;
Kim, D. J. ;
Yang, H. ;
Shen, F. K. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (20)
[6]   Structural transition in large-lattice-mismatch heteroepitaxy [J].
Chen, Y ;
Washburn, J .
PHYSICAL REVIEW LETTERS, 1996, 77 (19) :4046-4049
[7]   Mean-field theory of quantum dot formation [J].
Dobbs, HT ;
Vvedensky, DD ;
Zangwill, A ;
Johansson, J ;
Carlsson, N ;
Seifert, W .
PHYSICAL REVIEW LETTERS, 1997, 79 (05) :897-900
[8]   1.3-1.4 μm photoluminescence emission from InAs/GaAs quantum dot multilayer structures grown on GaAs singular and vicinal substrates [J].
Egorov, VA ;
Cirlin, GE ;
Polyakov, NK ;
Petrov, VN ;
Tonkikh, AA ;
Volovik, BV ;
Musikhin, YG ;
Zhukov, AE ;
Tsatsul'nikov, AF ;
Ustinov, VM .
NANOTECHNOLOGY, 2000, 11 (04) :323-326
[9]   Structural characterization of InAs quantum dot chains grown by molecular beam epitaxy on nanoimprint lithography patterned GaAs(100) [J].
Hakkarainen, T. V. ;
Tommila, J. ;
Schramm, A. ;
Tukiainen, A. ;
Ahorinta, R. ;
Dumitrescu, M. ;
Guina, M. .
NANOTECHNOLOGY, 2011, 22 (29)
[10]   Lateral Ordering of InAs Quantum Dots on Cross-hatch Patterned GaInP [J].
Hakkarainen, Teemu ;
Schramm, Andreas ;
Tukiainen, Antti ;
Ahorinta, Risto ;
Toikkanen, Lauri ;
Guina, Mircea .
NANOSCALE RESEARCH LETTERS, 2010, 5 (12) :1892-1896