Sign-changing solutions to a gauged nonlinear Schrodinger equation

被引:45
作者
Li, Gongbao [1 ]
Luo, Xiao
Shuai, Wei
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
关键词
Gauged Schrodinger equation; Least energy sign-changing solutions; Asymptotic behavior; SCALAR FIELD-EQUATIONS; NODAL SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; WAVES;
D O I
10.1016/j.jmaa.2017.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and asymptotic behavior of the least energy sign-changing solutions to a gauged nonlinear Schrodinger equation {-Delta u + omega u + lambda(h2 vertical bar x vertical bar)/vertical bar x vertical bar(2) + (vertical bar x vertical bar)integral(+infinity) h(s)/su(2)(s)ds)u = vertical bar u vertical bar(p-2)u, x is an element of R-2, u is an element of H-r(1)(R-2), where omega, lambda > 0, p > 6 and h(s) = 1/2 (0)integral(s) ru(2)(r)dr. Combining constraint minimization method and quantitative deformation lemma, we prove that the problem possesses at least one least energy sign -changing solution u(lambda), which changes sign exactly once. Moreover, we show that the energy of u(lambda) is strictly larger than two times of the ground state energy. Finally, the asymptotic behavior of u(lambda) as lambda SE arrow 0 is also analyzed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1559 / 1578
页数:20
相关论文
共 32 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]  
[Anonymous], 1997, Minimax theorems
[3]   Infinitely many positive solutions for nonlinear equations with non-symmetric potentials [J].
Ao, Weiwei ;
Wei, Juncheng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (3-4) :761-798
[4]   INFINITELY MANY RADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC PROBLEM ON R(N) [J].
BARTSCH, T ;
WILLEM, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :261-276
[5]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[6]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]   On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations [J].
Byeon, Jaeyoung ;
Huh, Hyungjin ;
Seok, Jinmyoung .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) :1285-1316
[9]   Standing waves of nonlinear Schrodinger equations with the gauge field [J].
Byeon, Jaeyoung ;
Huh, Hyungjin ;
Seok, Jinmyoung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1575-1608
[10]   Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations [J].
Cao, Daomin ;
Li, Shuanglong ;
Luo, Peng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) :4037-4063