STABILITY OF CALDERON'S INVERSE CONDUCTIVITY PROBLEM IN THE PLANE FOR DISCONTINUOUS CONDUCTIVITIES

被引:40
作者
Clop, Albert [1 ,2 ]
Faraco, Daniel [3 ,4 ]
Ruiz, Alberto [4 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[3] CSIC UAM UCM UC3M, Inst Ciencias Matemat, Madrid 28049, Spain
[4] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Calderon's problem; stability; Inverse problem; GLOBAL UNIQUENESS; THEOREM; EQUATIONS;
D O I
10.3934/ipi.2010.4.49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that, in two dimensions, the Calderon inverse conductivity problem in Lipschitz domains is stable in the L-p sense when the conductivities are uniformly bounded in any fractional Sobolev space W-alpha,W-p alpha > 0, 1 < p < infinity.
引用
收藏
页码:49 / 91
页数:43
相关论文
共 50 条
[1]  
Adams D. R., 1996, Function Spaces and Potential Theory
[2]  
Adams R., 1985, Sobolev Spaces
[3]  
Ahlfors L., 1966, Lectures on quasiconformal mappings
[4]   SINGULAR SOLUTIONS OF ELLIPTIC-EQUATIONS AND THE DETERMINATION OF CONDUCTIVITY BY BOUNDARY MEASUREMENTS [J].
ALESSANDRINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :252-272
[5]   Lipschitz stability for the inverse conductivity problem [J].
Alessandrini, G ;
Vessella, S .
ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (02) :207-241
[6]  
ALESSANDRINI G, 2007, J INVERSE ILL-POSE P, V15, P1
[7]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[8]  
[Anonymous], ELLIPTIC SYSTEMS QUA
[9]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[10]  
[Anonymous], 2009, Princeton Mathematical Series