Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition

被引:11
作者
Zhang, Dalin [1 ]
Yao, Lina [1 ]
Wang, Sen [2 ]
Chen, Kaixuan [1 ]
Yang, Zheng [3 ]
Benatallah, Boualem [1 ]
机构
[1] UNSW Sydney, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Griffith Univ, Sch Informat & Commun Technol, Brisbane, Qld, Australia
[3] Tsinghua Univ, Sch Software, Beijing, Peoples R China
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I | 2018年 / 10937卷
关键词
NEURAL-NETWORKS; GAZE CONTROL;
D O I
10.1007/978-3-319-93034-3_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-invasive brain-computer interface using electroencephalography (EEG) signals promises a convenient approach empowering humans to communicate with and even control the outside world only with intentions. Herein, we propose to analyze EEG signals using fuzzy integral with deep reinforcement learning optimization to aggregate two aspects of information contained within EEG signals, namely local spatio-temporal and global temporal information, and demonstrate its benefits in EEG-based human intention recognition tasks. The EEG signals are first transformed into a 3D format preserving both topological and temporal structures, followed by distinctive local spatio-temporal feature extraction by a 3D-CNN, as well as the global temporal feature extraction by an RNN. Next, a fuzzy integral with respect to the optimized fuzzy measures with deep reinforcement learning is utilized to integrate the two extracted information and makes a final decision. The proposed approach retains the topological and temporal structures of EEG signals and merges them in a more efficient way. Experiments on a public EEG-based movement intention dataset demonstrate the effectiveness and superior performance of our proposed method.
引用
收藏
页码:156 / 168
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 2016, INT C LEARN REPR
[2]  
[Anonymous], PROC CVPR IEEE
[3]  
[Anonymous], COMPUT INTELL NEUROS
[4]  
[Anonymous], 14 INT C MOB UB SYST
[5]   Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces [J].
Cecotti, Hubert ;
Graeser, Axel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :433-445
[6]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[7]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[8]   BCI2000: A general-purpose, brain-computer interface (BCI) system [J].
Schalk, G ;
McFarland, DJ ;
Hinterberger, T ;
Birbaumer, N ;
Wolpaw, JR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1034-1043
[9]   Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization [J].
Schirrmeister, Robin Tibor ;
Springenberg, Jost Tobias ;
Fiederer, Lukas Dominique Josef ;
Glasstetter, Martin ;
Eggensperger, Katharina ;
Tangermann, Michael ;
Hutter, Frank ;
Burgard, Wolfram ;
Ball, Tonio .
HUMAN BRAIN MAPPING, 2017, 38 (11) :5391-5420
[10]  
Shenoy HV, 2015, 2015 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS)