Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production

被引:39
|
作者
Niju, S. [1 ]
Swathika, M. [1 ]
机构
[1] PSG Coll Technol, Dept Biotechnol, Coimbatore 641004, Tamil Nadu, India
关键词
Sugarcane bagasse; Hydrogen peroxide; Pretreatment; Life cycle analysis; Bioethanol; ALKALINE HYDROGEN-PEROXIDE; ETHANOL-PRODUCTION; ENZYMATIC SACCHARIFICATION; WHEAT-STRAW; FERMENTATION; OPTIMIZATION; HYDROLYSIS; BIOMASS; ENERGY; TOPS;
D O I
10.1016/j.bcab.2019.101263
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sugarcane bagasse has proved to be a promising feedstock for bioethanol production due to its high cellulosic content and huge availability. For bioethanol production to be effective, pretreatment is the most crucial step to remove recalcitrant lignin and make cellulose more accessible to enzymes for hydrolysis. The most widely used pretreatment techniques employ high temperature and pressure which generate biological growth inhibitors such as furfural and hydroxy methyl furfural (HMF). Hence, adaptation of a pretreatment technique operating at ambient temperature and pressure is mandatory as it reduces the inhibitors being formed. Alkaline hydrogen peroxide (AHP) is notable among all the pretreatments as it operates at room temperature and it is found to increase the efficiency of hydrolysis. Moreover, there is no or very less inhibitors formation in this treatment which in turn improves fermentation. Thus, the present study reviews about current pretreatment technologies and their drawbacks due to inhibitors formation, and importantly examines the key roles of AHP in refining the biomass particularly sugarcane bagasse for bioethanol production.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production (vol 20C, 101263, 2019)
    Niju, S.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2021, 36
  • [2] Pretreatment Strategies for Delignification of Sugarcane Bagasse: A Review
    Karp, Susan Grace
    Woiciechowski, Adenise Lorenci
    Soccol, Vanete Thomaz
    Soccol, Carlos Ricardo
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2013, 56 (04) : 679 - 689
  • [3] Optimizing alkaline pretreatment for delignification of paddy straw and sugarcane bagasse to enhance bioethanol production
    Tharunkumar, J.
    Arosha, V. K.
    Bajhaiya, Amit K.
    Rakesh, Suchitra
    BIOMASS CONVERSION AND BIOREFINERY, 2024,
  • [4] Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production
    Sarita C. Rabelo
    Rubens Maciel Filho
    Aline Carvalho Costa
    Applied Biochemistry and Biotechnology, 2009, 153 : 139 - 150
  • [5] Alkaline Pretreatment on Sugarcane Bagasse for Bioethanol Production
    Maryana, Roni
    Ma'rifatun, Dian
    Wheni, A. I.
    Satriyo, K. W.
    Rizal, W. Angga
    CONFERENCE AND EXHIBITION INDONESIA RENEWABLE ENERGY & ENERGY CONSERVATION (INDONESIA EBTKE-CONEX 2013), 2014, 47 : 250 - 254
  • [6] Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production
    Rabelo, Sarita C.
    Maciel Filho, Rubens
    Costa, Aline Carvalho
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2009, 153 (1-2) : 139 - 150
  • [7] Bioethanol Production: Optimization of Pretreatment Condition of Sugarcane Bagasse
    Igwo-Ezikpe, Miriam
    Odumade, Olusegun
    Ayanshina, Oluwamuyiwa
    Babalola, Musa
    FASEB JOURNAL, 2015, 29
  • [8] Sequential pretreatment of sugarcane bagasse by alkali and organosolv for improved delignification and cellulose saccharification by chimera and cellobiohydrolase for bioethanol production
    Priyanka Nath
    Premeshworii Devi Maibam
    Shweta Singh
    Vikky Rajulapati
    Arun Goyal
    3 Biotech, 2021, 11
  • [9] Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production
    Rocha, G. J. M.
    Goncalves, A. R.
    Oliveira, B. R.
    Olivares, E. G.
    Rossell, C. E. V.
    INDUSTRIAL CROPS AND PRODUCTS, 2012, 35 (01) : 274 - 279
  • [10] Sequential pretreatment of sugarcane bagasse by alkali and organosolv for improved delignification and cellulose saccharification by chimera and cellobiohydrolase for bioethanol production
    Nath, Priyanka
    Maibam, Premeshworii Devi
    Singh, Shweta
    Rajulapati, Vikky
    Goyal, Arun
    3 BIOTECH, 2021, 11 (02)