Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels

被引:62
作者
Dai, Enyan [1 ]
Jin, Wei [2 ]
Liu, Hui [2 ]
Wang, Suhang [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
来源
WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING | 2022年
基金
美国国家科学基金会;
关键词
Noisy Edges; Robustness; Graph Neural Networks;
D O I
10.1145/3488560.3498408
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) have shown their great ability in modeling graph structured data. However, real-world graphs usually contain structure noises and have limited labeled nodes. The performance of GNNs would drop significantly when trained on such graphs, which hinders the adoption of GNNs on many applications. Thus, it is important to develop noise-resistant GNNs with limited labeled nodes. However, the work on this is rather limited. Therefore, we study a novel problem of developing robust GNNs on noisy graphs with limited labeled nodes. Our analysis shows that both the noisy edges and limited labeled nodes could harm the message-passing mechanism of GNNs. To mitigate these issues, we propose a novel framework which adopts the noisy edges as supervision to learn a denoised and dense graph, which can down-weight or eliminate noisy edges and facilitate message passing of GNNs to alleviate the issue of limited labeled nodes. The generated edges are further used to regularize the predictions of unlabeled nodes with label smoothness to better train GNNs. Experimental results on real-world datasets demonstrate the robustness of the proposed framework on noisy graphs with limited labeled nodes.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 50 条
[31]   Robust Knowledge Adaptation for Dynamic Graph Neural Networks [J].
Li, Hanjie ;
Li, Changsheng ;
Feng, Kaituo ;
Yuan, Ye ;
Wang, Guoren ;
Zha, Hongyuan .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) :6920-6933
[32]   Robust Graph Neural Networks via Ensemble Learning [J].
Lin, Qi ;
Yu, Shuo ;
Sun, Ke ;
Zhao, Wenhong ;
Alfarraj, Osama ;
Tolba, Amr ;
Xia, Feng .
MATHEMATICS, 2022, 10 (08)
[33]   Graph Sequential Neural ODE Process for Link Prediction on Dynamic and Sparse Graphs [J].
Luo, Linhao ;
Haffari, Gholamreza ;
Pan, Shirui .
PROCEEDINGS OF THE SIXTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2023, VOL 1, 2023, :778-786
[34]   Robust Semisupervised Classification for PolSAR Image With Noisy Labels [J].
Hou, Biao ;
Wu, Qian ;
Wen, Zaidao ;
Jiao, Licheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11) :6440-6455
[35]   Group link prediction in bipartite graphs with graph neural networks [J].
Luo, Shijie ;
Li, He ;
Huang, Jianbin ;
Ma, Xiaoke ;
Cui, Jiangtao ;
Qiao, Shaojie ;
Yoo, Jaesoo .
PATTERN RECOGNITION, 2025, 158
[36]   Learning by Transference: Training Graph Neural Networks on Growing Graphs [J].
Cervino, Juan ;
Ruiz, Luana ;
Ribeiro, Alejandro .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 :233-247
[37]   Enabling the Application of Graph Neural Networks on Graphs With Unknown Connectivity [J].
García-Carrasco, Jorge ;
Maté, Alejandro ;
Trujillo, Juan .
Expert Systems, 2025, 42 (08)
[38]   Towards Differential Privacy in Sequential Recommendation: A Noisy Graph Neural Network Approach [J].
Hu, Wentao ;
Fang, Hui .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (05)
[39]   Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks [J].
Gatti, Alice ;
Hu, Zhixiong ;
Smidt, Tess ;
Ng, Esmond G. ;
Ghysels, Pieter .
JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
[40]   Towards Inductive and Efficient Explanations for Graph Neural Networks [J].
Luo, Dongsheng ;
Zhao, Tianxiang ;
Cheng, Wei ;
Xu, Dongkuan ;
Han, Feng ;
Yu, Wenchao ;
Liu, Xiao ;
Chen, Haifeng ;
Zhang, Xiang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) :5245-5259