Bubbling Solutions for Relativistic Abelian Chern-Simons Model on a Torus

被引:52
作者
Lin, Chang-Shou [1 ]
Yan, Shusen [2 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taida Inst Math Sci, Taipei 106, Taiwan
[2] Univ New England, Dept Math, Armidale, NSW 2351, Australia
基金
英国科研创新办公室;
关键词
NONTOPOLOGICAL MULTIVORTEX SOLUTIONS; FIELDS;
D O I
10.1007/s00220-010-1056-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of bubbling solutions for the following Chern-Simons-Higgs equation: Delta u + 1/epsilon(2)e(u)(1 - e(u)) = 4 pi Sigma(N)(j=1) delta(pj), in Omega, where Omega is a torus. We show that if N > 4 and p(1) not equal p(j), j = 2, ... , N, then for small epsilon > 0, the above problem has a solution u(epsilon), and as epsilon -> 0, u(epsilon) blows up at the vertex point p(1), and satisfies 1/epsilon(2)e(u)(1 - e(u)) -> 4 pi N delta(p1). This is the first result for the existence of a solution which blows up at a vertex point.
引用
收藏
页码:733 / 758
页数:26
相关论文
共 21 条
[11]  
JAFFE A, 1990, VORTICES MONOPOLES P, V2
[12]   SCHRODINGER FIELDS ON THE PLANE WITH [U(1)](N) CHERN-SIMONS INTERACTIONS AND GENERALIZED SELF-DUAL SOLITONS [J].
KIM, C ;
LEE, C ;
KO, P ;
LEE, BH ;
MIN, H .
PHYSICAL REVIEW D, 1993, 48 (04) :1821-1840
[13]   A system of elliptic equations arising in Chern-Simons field theory [J].
Lin, Chang-Shou ;
Ponce, Augusto C. ;
Yang, Yisong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (02) :289-350
[14]   Vortex Condensates for Relativistic Abelian Chern-Simons Model with Two Higgs Scalar Fields and Two Gauge Fields on a Torus [J].
Lin, Chang-Shou ;
Prajapat, Jyotshana V. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (01) :311-347
[15]  
LIN CS, ANN MATH IN PRESS
[16]   Vortex condensates for the SU(3) Chern-Simons theory [J].
Nolasco, M ;
Tarantello, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (03) :599-639
[17]   Double vortex condensates in the Chern-Simons-Higgs theory [J].
Nolasco, M ;
Tarantello, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (01) :31-94
[18]   On a sharp Sobolev-type inequality on two-dimensional compact manifolds [J].
Nolasco, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 145 (02) :161-195
[19]   Multiple condensate solutions for the Chern-Simons-Higgs theory [J].
Tarantello, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) :3769-3796
[20]  
Tarantello G., 2007, SELF DUAL GAUGE FIEL