On generalized quasi-Einstein manifolds

被引:2
作者
Freitas Filho, Antonio Airton [1 ]
Tenenblat, Keti [2 ]
机构
[1] Univ Fed Amazonas, Dept Math, Ave Rodrigo Octavio 6200, BR-69080900 Manaus, AM, Brazil
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
Generalized quasi-Einstein manifolds; Einstein type manifolds; Rigidity results; Conformally flat complete manifolds; GRADIENT RICCI;
D O I
10.1016/j.geomphys.2022.104562
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A rigidity result for a class of compact generalized quasi-Einstein manifolds with constant scalar curvature is obtained. Moreover, under some geometric assumptions, the rigidity for the non-compact case is also proved. Considering non constant scalar curvature, we characterize the generalized quasi-Einstein manifolds which is conformal to the Euclidean space and we show that there exist two classes of complete manifolds, which are obtained by considering potential functions and conformal factors either to be radial or invariant under the action of an (n-1) dimensional translation group. Explicit examples are given. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 1971, J. Differential Geometry
[2]  
[Anonymous], 1960, Osaka Math. J
[3]  
Berger M., 1971, Lecture Notes in Mathematics, V194
[4]  
Besse A. L., 1987, EINSTEIN MANIFOLDS
[5]   Ricci almost solitons on semi-Riemannian warped products [J].
Borges, Valter ;
Tenenblat, Keti .
MATHEMATISCHE NACHRICHTEN, 2022, 295 (01) :22-43
[6]  
Cao H.-D., 2009, Adv. Lect. Math., V11, P1
[7]   Rigidity of quasi-Einstein metrics [J].
Case, Jeffrey ;
Shu, Yu-Jen ;
Wei, Guofang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) :93-100
[8]   ON THE GEOMETRY OF GRADIENT EINSTEIN-TYPE MANIFOLDS [J].
Catino, Giovanni ;
Mastrolia, Paolo ;
Monticelli, Dario D. ;
Rigoli, Marco .
PACIFIC JOURNAL OF MATHEMATICS, 2017, 286 (01) :39-67
[9]   Generalized quasi-Einstein manifolds with harmonic Weyl tensor [J].
Catino, Giovanni .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :751-756
[10]   Gradient Ricci almost soliton warped product [J].
Feitosa, F. E. S. ;
Freitas Filho, A. A. ;
Gomes, J. N. V. ;
Pina, R. S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 143 :22-32