Kadec and Krein-Milman properties

被引:8
作者
Moltó, A
Orihuela, J
Troyanski, S
Valdivia, M
机构
[1] Univ Valencia, Fac Matemat, Dept Anal Matemat, E-46100 Burjassot, Spain
[2] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[3] Univ Sofia, Dept Math & Informat, Sofia 1164, Bulgaria
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 06期
关键词
D O I
10.1016/S0764-4442(00)01644-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to prove that any Banach space X with the Krein-Milman property such that the weak and the norm topology coincide on its unit sphere admits an equivalent norm that is locally uniformly rotund. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:459 / 464
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1996, INTRO BANACH SPACES
[2]   A CLASS OF SPECIAL L-INFINITY SPACES [J].
BOURGAIN, J ;
DELBAEN, F .
ACTA MATHEMATICA, 1980, 145 (3-4) :155-176
[3]  
Deville R., 1993, PITMAN MONOGRAPHS SU, V64
[4]   THE DUAL OF EVERY ASPLUND SPACE ADMITS A PROJECTIONAL RESOLUTION OF THE IDENTITY [J].
FABIAN, M ;
GODEFROY, G .
STUDIA MATHEMATICA, 1988, 91 (02) :141-151
[5]   Trees in renorming theory [J].
Haydon, R .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 78 :541-584
[6]   SIGMA-FRAGMENTABLE BANACH-SPACES [J].
JAYNE, JE ;
NAMIOKA, I ;
ROGERS, CA .
MATHEMATIKA, 1992, 39 (78) :197-215
[7]   SIGMA-FRAGMENTABLE BANACH-SPACES [J].
JAYNE, JE ;
NAMIOKA, I ;
ROGERS, CA .
MATHEMATIKA, 1992, 39 (77) :161-188
[8]   CHARACTERIZATIONS OF DENTING POINTS [J].
LIN, BL ;
LIN, PK ;
TROYANSKI, SL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) :526-528
[9]  
MCCARTNEY PW, 1980, P AM MATH SOC, V78, P40
[10]   Locally uniformly rotund renorming and fragmentability [J].
Molto, A ;
Orihuela, J ;
Troyanski, S .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 :619-640