Mixed Newton numbers and isolated complete intersection singularities

被引:12
作者
Bivia-Ausina, Carles [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, ETSGE, Valencia 46022, Spain
关键词
D O I
10.1112/plms/pdm003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : (C-n, 0) -> (C-p, 0) be a complete intersection with an isolated singularity at the origin. We give a lower bound for the Milnor number of f in terms of the mixed multiplicities of a set of monomial ideals attached to the Newton polyhedra of the component functions of f. The Milnor number of f equals the bound that we give when f satisfies a condition that we define and that extends the notion of Newton non-degenerate function studied by Kouchnirenko. Our techniques are based on the notion of integral closure of submodules and its relation with Buchsbaum-Rim multiplicity and mixed multiplicities of a set of ideals.
引用
收藏
页码:749 / 771
页数:23
相关论文
共 29 条
[1]   CODIMENSION AND MULTIPLICITY [J].
AUSLANDER, M ;
BUCHSBAUM, DA .
ANNALS OF MATHEMATICS, 1958, 68 (03) :625-657
[2]   Jacobian ideals and the Newton non-degeneracy condition [J].
Bivià-Ausina, C .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :21-36
[3]   Nondegenerate ideals in formal power series rings [J].
Bivià-Ausina, C .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (02) :495-511
[4]   The integral closure of modules, Buchsbaum-Rim multiplicities and Newton polyhedra [J].
Bivià-Ausina, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :407-427
[5]   Newton filtrations, graded algebras and codimension of non-degenerate ideals [J].
Bivià-Ausina, C ;
Fukui, T ;
Saia, MJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 :55-75
[6]  
Buchsbaum D., 1965, T AM MATH SOC, V111, P197, DOI DOI 10.2307/1994241
[8]   INTEGRAL CLOSURE OF MODULES AND WHITNEY EQUISINGULARITY [J].
GAFFNEY, T .
INVENTIONES MATHEMATICAE, 1992, 107 (02) :301-322
[9]  
Gaffney T, 1996, INVENT MATH, V123, P209, DOI 10.1007/s002220050022
[10]   GAUSS-MANIN CONNECTION OF ISOLATED SINGULARITIES OF COMPLETE AVERAGES [J].
GREUEL, GM .
MATHEMATISCHE ANNALEN, 1975, 214 (03) :235-266