Parameters estimation in Ebola virus transmission dynamics model based on machine learning

被引:4
作者
Gong, Jing [1 ]
Wu, Yong-Ping [2 ]
Li, Li [3 ,4 ]
机构
[1] Shanxi Univ, Complex Syst Res Ctr, Taiyuan 030006, Shanxi, Peoples R China
[2] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R China
[3] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China
[4] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Shanxi, Peoples R China
基金
中国博士后科学基金;
关键词
Ebola; Probabilistic machine learning; Multi-output Gaussian process; Kernel function; HEMORRHAGIC-FEVER; INVERSE PROBLEMS; CONGO; VACCINATION; EPIDEMIC; KIKWIT;
D O I
10.1016/j.physa.2019.122604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the application of machine learning to parameter estimation in biomathematical model. The background of Ebola disease was introduced, including the structure and morphology of the virus, the causes of disease, the mode of transmission, prevention and control measures. Meanwhile, it is essential to present the mechanism of this method, the application and calculation process, and the parameters. Compared with other methods, this method can not only obtain more accurate parameter values based on fewer and scattered data, but also estimate the parameters appearing anywhere in the partial differential equation, and automatically filter arbitrary noise data through Gaussian priori hypothesis. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Mapping the transmission risk of Zika virus using machine learning models [J].
Jiang, Dong ;
Hao, Mengmeng ;
Ding, Fangyu ;
Fu, Jingying ;
Li, Meng .
ACTA TROPICA, 2018, 185 :391-399
[22]   Dynamics of a Zika virus transmission model with seasonality and periodic delays [J].
Wang, Wei ;
Zhou, Mengchen ;
Zhang, Tonghua ;
Feng, Zhaosheng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
[23]   Threshold dynamics of reaction-diffusion partial differential equations model of Ebola virus disease [J].
Yamazaki, Kazuo .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (08)
[24]   Estimation of the transmission dynamics of African swine fever virus within a swine house [J].
Nielsen, J. P. ;
Larsen, T. S. ;
Halasa, T. ;
Christiansen, L. E. .
EPIDEMIOLOGY AND INFECTION, 2017, 145 (13) :2787-2796
[25]   Modelling the impact of some control strategies on the transmission dynamics of Ebola virus in human-bat population: An optimal control [J].
Agbomola, Joshua Oluwasegun ;
Loyinmi, Adedapo Chris .
HELIYON, 2022, 8 (12)
[26]   Transmission Dynamics of Zika Fever: A SEIR Based Model [J].
Imran, Mudassar ;
Usman, Muhammad ;
Dur-e-Ahmad, Muhammad ;
Khan, Adnan .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) :463-486
[27]   Expanded Histopathology and Tropism of Ebola Virus in the Rhesus Macaque Model Potential for Sexual Transmission, Altered Adrenomedullary Hormone Production, and Early Viral Replication in Liver [J].
Liu, David X. ;
Cooper, Timothy K. ;
Perry, Donna L. ;
Huzella, Louis M. ;
Hischak, Amanda M. W. ;
Hart, Randy J. ;
Isic, Nejra ;
Byrum, Russell ;
Ragland, Danny ;
St Claire, Marisa ;
Cooper, Kurt ;
Reeder, Rebecca ;
Logue, James ;
Jahrling, Peter B. ;
Holbrook, Michael R. ;
Bennett, Richard S. ;
Hensley, Lisa E. .
AMERICAN JOURNAL OF PATHOLOGY, 2022, 192 (01) :121-129
[28]   Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus [J].
Agusto, Folashade B. ;
Easley, Shamise ;
Freeman, Kenneth ;
Thomas, Madison .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
[29]   Vaccination Model and Optimal Control Analysis of Novel Corona Virus Transmission Dynamics [J].
Melese A.S. .
Journal of Mathematical Sciences, 2023, 271 (1) :76-97
[30]   Assessing the ecological resilience of Ebola virus in Africa and potential influencing factors based on a synthesized model [J].
Shen, Li ;
Song, Jiawei ;
Zhou, Yibo ;
Yuan, Xiaojie ;
Seery, Samuel ;
Fu, Ting ;
Liu, Xihao ;
Liu, Yihong ;
Shao, Zhongjun ;
Li, Rui ;
Liu, Kun .
PLOS NEGLECTED TROPICAL DISEASES, 2025, 19 (02)