Sampling for the fourth-order Sturm-Liouville differential operator

被引:10
|
作者
Boumenir, A [1 ]
机构
[1] Univ W Georgia, Dept Math, Carrollton, GA 30118 USA
关键词
D O I
10.1016/S0022-247X(03)00014-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the sampling method to compute the eigenvalues of a fourth-order differential operator. We show that the Shannon sampling theorem is not applicable due to the growth of the solutions on the real line. The inverse spectral theory, as developed by McLaughlin, and Kramer's theorem allow us to express the characteristic function explicitly by a new sampling formula. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 50 条
  • [1] ON THE SQUARE ROOT OF THE OPERATOR OF STURM-LIOUVILLE FOURTH-ORDER
    Shaldanbayev, A. Sh.
    Imanbayeva, A. B.
    Beisebayeva, A. Zh.
    Shaldanbayeva, A. A.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2019, 3 (325): : 85 - 96
  • [2] Discrete fourth-order Sturm-Liouville problems
    Ben-Artzi, Matania
    Croisille, Jean-Pierre
    Fishelov, Dalia
    Katzir, Ron
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1485 - 1522
  • [3] An inverse spectral problem for a fourth-order Sturm-Liouville operator based on trace formulae
    Jiang, Xiaoying
    Xu, Xiang
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [4] Determination of the leading coefficient in fourth-order Sturm-Liouville operator from boundary measurements
    Lesnic, D.
    Hasanovz, A.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2008, 16 (04) : 413 - 424
  • [5] Pseudospectral method for fourth-order fractional Sturm-Liouville problems
    Bin Jebreen, Haifa
    Hernandez-Jimenez, Beatriz
    AIMS MATHEMATICS, 2024, 9 (09): : 26077 - 26091
  • [6] Eigenvalues of a class of regular fourth-order Sturm-Liouville problems
    Suo, Jianqing
    Wang, Wanyi
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9716 - 9729
  • [7] DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM
    Suo, Jianqing
    Shi, Zhijie
    Wei, Zhen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2788 - 2807
  • [8] Singular fourth-order Sturm-Liouville operators and acoustic black holes
    Belinskiy, Boris P.
    Hinton, Don B.
    Nichols, Roger A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2022, 87 (05) : 804 - 851
  • [9] Spectral parameter power series for fourth-order Sturm-Liouville problems
    Khmelnytskaya, Kira V.
    Kravchenko, Vladislav V.
    Baldenebro-Obeso, Jesus A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3610 - 3624
  • [10] Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary
    Ge, Suqin
    Wang, Wanyi
    Suo, Jianqing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 268 - 276