Non-invasive yet separate investigation of anode/cathode degradation of lithium-ion batteries (nickel-cobalt-manganese vs. graphite) due to accelerated aging

被引:71
作者
Sabet, Pouyan Shafiei [1 ,3 ]
Warnecke, Alexander Johannes [1 ,3 ]
Meier, Frank [1 ,3 ]
Witzenhausen, Heiko [1 ,3 ]
Martinez-Laserna, Egoitz [4 ]
Sauer, Dirk Uwe [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Power Elect & Elect Drives ISEA, Chair Electrochem Energy Convers & Storage Syst, Jaegerstr 17-19, D-52066 Aachen, Germany
[2] Rhein Westfal TH Aachen, E ON ERC, Inst Power Generat & Storage Syst PGS, Aachen, Germany
[3] JARA Energy, Juelich Aachen Res Alliance, Aachen, Germany
[4] Ikerlan Technol Res Ctr, Energy Storage & Management Area, PJM Arizmendiarrieta 2, Arrasate Mondragon 20500, Spain
关键词
Lithium-ion battery; Nickel-manganese-cobalt; Electrochemical impedance spectroscopy; Battery aging; RELAXATION-TIMES; LONG-LIFE; CATHODE; DECONVOLUTION; MECHANISMS; DEPOSITION; ELECTRODE; CELLS; PERFORMANCE; NMC;
D O I
10.1016/j.jpowsour.2019.227369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The non-invasive investigation of lithium-ion batteries is of great importance, e.g. for improvement of electrode materials or monitoring the state of health (SOH) in stationary or mobile applications. Electrochemical impedance spectroscopy (EIS) is a powerful tool for this task. Once the predominant processes in the impedance spectra are assigned to their corresponding electrode (i.e. anode or cathode), a tracking of both electrode's SOH becomes possible. In a previous work, this assignment has been performed. Two predominant processes were found: the impedance of the solid electroly interphase (SEI) and the NMC's charge transfer. In this work, this information is used for a non-invasive yet separate investigation of anode and cathode degradation throughout aging. Cells have been aged for about 700 days (calendric aging) or about 3000 full cycle equivalents (cyclic aging) at three different operating points each. A combination of impedance spectra analysis, differential voltage analysis (DVA) and post mortem analysis (PMA) determines the main aging mechanisms. Calendric aging: SEI-growth, CEI-growth, cathode-dissolution. Cyclic aging: anode's and cathode's particle-cracking, cathode-dissolution and possibly CEI-growth.
引用
收藏
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 2018, THESIS
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], [No title captured]
[5]  
[Anonymous], [No title captured]
[6]   A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells [J].
Bhattacharya, Sandeep ;
Riahi, A. Reza ;
Alpas, Ahmet T. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8719-8727
[7]   First Evidence of Manganese-Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries [J].
Boulineau, Adrien ;
Simonin, Loic ;
Colin, Jean-Francois ;
Bourbon, Carole ;
Patoux, Sebastien .
NANO LETTERS, 2013, 13 (08) :3857-3863
[8]   Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li1.03(Ni1/3Co1/3Mn1/3)0.97O2 [J].
Choi, J ;
Manthiram, A .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (10) :A365-A368
[9]   Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction [J].
Dolotko, O. ;
Senyshyn, A. ;
Muehlbauer, M. J. ;
Nikolowski, K. ;
Ehrenberg, H. .
JOURNAL OF POWER SOURCES, 2014, 255 :197-203
[10]   Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs [J].
Dubarry, Matthieu ;
Truchot, Cyril ;
Liaw, Bor Yann .
JOURNAL OF POWER SOURCES, 2014, 258 :408-419