A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life

被引:65
作者
Lang, Jihui [1 ,2 ]
Li, Jinrui [1 ,2 ]
Ou, Xuewu [2 ]
Zhang, Fan [1 ,2 ]
Shin, Kyungsoo [2 ]
Tang, Yongbing [1 ,2 ]
机构
[1] Jilin Normal Univ, Minist Educ, Key Lab Funct Mat Phys & Chem, Siping 136000, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Funct Thin Films Res Ctr, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
potassium-ion battery; hybrid capacitor; flexible; Sn anode; gel electrolyte; ELECTRODE MATERIALS; CATHODE; STORAGE; ANODES; MICROSPHERES;
D O I
10.1021/acsami.9b17635
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Potassium-ion batteries are promising candidates for large-scale energy storage applications owing to their merits of abundant resources, low cost, and high working voltage. However, the unsatisfying rate performance and cycling stability caused by sluggish K+ diffusion kinetics and dramatic volume expansion hinder the development of potassium-ion batteries. In this study, we design a flexible potassium-ion hybrid capacitor (PIHC) by combining the K-Sn alloying mechanism on the Sn anode and the fast capacitive behavior on the AC cathode with high surface area and mesoporous structure. After optimization, the fabricated Sn parallel to AC PIHC achieves both a high energy density of 120 W h kg(-1) and high power density of 2850 W kg(-1), much better than other similar hybrid devices. Moreover, a gel polymer electrolyte with a 3D porous structure and high ionic conductivity was employed to improve the structural stability of the Sn anode, which not only realizes good flexibility but also achieves long cycling stability with a capacity retention of nearly 100% for 2000 cycles at a high current density of 3.0 A g(-1).
引用
收藏
页码:2424 / 2431
页数:8
相关论文
共 65 条
[1]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[2]   Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K2Ti6O13 Microscaffolds [J].
Dong, Shengyang ;
Li, Zhifei ;
Xing, Zhenyu ;
Wu, Xianyong ;
Ji, Xiulei ;
Zhang, Xiaogang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (18) :15542-15547
[3]   Graphite Anode for a Potassium-Ion Battery with Unprecedented Performance [J].
Fan, Ling ;
Ma, Ruifang ;
Zhang, Qingfeng ;
Jia, Xinxin ;
Lu, Bingan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10500-10505
[4]   A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device [J].
Fan, Ling ;
Lin, Kairui ;
Wang, Jue ;
Ma, Ruifang ;
Lu, Bingan .
ADVANCED MATERIALS, 2018, 30 (20)
[5]   Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor [J].
Feng, Yanhong ;
Chen, Suhua ;
Wang, Jue ;
Lu, Bingan .
JOURNAL OF ENERGY CHEMISTRY, 2020, 43 :129-138
[6]   CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries [J].
Gao, Hong ;
Zhou, Tengfei ;
Zheng, Yang ;
Zhang, Qing ;
Liu, Yuqing ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (43)
[7]   MoSe2/N-Doped Carbon as Anodes for Potassium-Ion Batteries [J].
Ge, JunMin ;
Fan, Ling ;
Wang, Jue ;
Zhang, Qingfeng ;
Liu, Zhaomeng ;
Zhang, Erjin ;
Liu, Qian ;
Yu, Xinzhi ;
Lu, Bingan .
ADVANCED ENERGY MATERIALS, 2018, 8 (29)
[8]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[9]   Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries [J].
He, Pan ;
Zhang, Guobin ;
Liao, Xiaobin ;
Yan, Mengyu ;
Xu, Xu ;
An, Qinyou ;
Liu, Jun ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904