Reductions and exact solutions of the (2+1)-dimensional breaking soliton equation via conservation laws

被引:10
作者
Muatjetjeja, Ben [1 ]
Porogo, Ofentse P. [1 ]
机构
[1] North West Univ, Dept Math Sci, Mafikeng Campus,Private Bag X 2046, Mmabatho 2735, South Korea
关键词
Lagrangian; Noether operators; Conservation laws; Generalized double reduction; Exact solutions; NONLINEAR EVOLUTION-EQUATIONS; INVERSE SPECTRAL TRANSFORM; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; SYMMETRIES;
D O I
10.1007/s11071-017-3463-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We construct conservation laws for the (2+1)-dimensional breaking soliton equation. Thereafter, we employ the definition of the association of symmetries with conservation laws to obtain exact solutions for the (2+1)-dimensional breaking soliton equation via the generalized double reduction theorem.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1918, MATH PHYS KL HEFT
[2]   Generalization of the double reduction theory [J].
Bokhari, Ashfaque H. ;
Al-Dweik, Ahmad Y. ;
Zaman, F. D. ;
Kara, A. H. ;
Mahomed, F. M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3763-3769
[3]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .2. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 39 (01) :1-54
[4]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .1. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1976, 32 (02) :201-242
[5]   Lie-Backlund and Noether symmetries with applications [J].
Ibragimov, NH ;
Kara, AH ;
Mahomed, FM .
NONLINEAR DYNAMICS, 1998, 15 (02) :115-136
[6]   Noether-type symmetries and conservation laws via partial Lagrangians [J].
Kara, A. H. ;
Mahomed, F. A. .
NONLINEAR DYNAMICS, 2006, 45 (3-4) :367-383
[7]   A basis of conservation laws for partial differential equations [J].
Kara, AH ;
Mahomed, FM .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 (Suppl 2) :60-72
[8]  
KUDRYASHOV NA, 1988, PMM-J APPL MATH MEC+, V52, P361
[9]   ON TYPES OF NONLINEAR NONINTEGRABLE EQUATIONS WITH EXACT-SOLUTIONS [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1991, 155 (4-5) :269-275
[10]   One method for finding exact solutions of nonlinear differential equations [J].
Kudryashov, Nikolay A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2248-2253