Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis

被引:68
作者
Arias, Jose L. [1 ]
Unciti-Broceta, Juan D. [2 ,3 ,4 ]
Maceira, Jose [2 ,3 ,4 ]
del Castillo, Teresa [2 ,3 ,4 ]
Hernandez-Quero, Jose [2 ]
Magez, Stefan [5 ,6 ]
Soriano, Miguel [4 ,7 ]
Garcia-Salcedo, Jose A. [2 ,3 ,4 ]
机构
[1] Univ Granada, Fac Farm, Dept Farm & Tecnol Farmaceut, Granada 18016, Spain
[2] Univ Granada, Hosp Univ Granada, GRANADA, Inst Invest Biosanitaria ibs,Unidad Enfermedades, Granada 18016, Spain
[3] PTS Granada, IPBLN CSIC, Armilla, Spain
[4] Univ Granada, PTS Granada, Junta De Andalucia, Pfizer,GENYO,Ctr Genom & Invest Oncol, Granada 18016, Spain
[5] Vrije Univ Brussel, Unit Cellular & Mol Immunol, Brussels, Belgium
[6] Vrije Univ Brussel, VIB, Dept Biol Struct, Brussels, Belgium
[7] Univ Almeria, Dept Agron, Almeria, Spain
关键词
Polymeric nanoparticles; PLGA; Nanobody nanoparticles conjugation; PEGylation; Specific cell targeting; Human African trypanosomiasis; DRUG-DELIVERY SYSTEMS; DOMAIN ANTIBODY FRAGMENTS; IN-VITRO; BRUCEI; RELEASE; MICROPARTICLES; ENDOCYTOSIS; FORMULATION; INHIBITORS; STRATEGIES;
D O I
10.1016/j.jconrel.2014.11.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Targeted delivery of therapeutics is an alternative approach for the selective treatment of infectious diseases. The surface of African trypanosomes, the causative agents of African trypanosomiasis, is covered by a surface coat consisting of a single variant surface glycoprotein, termed VSG. This coat is recycled by endocytosis at a very high speed, making the trypanosome surface an excellent target for the delivery of trypanocidal drugs. Here, we report the design of a drug nanocarrier based on poly ethylen glycol (PEG) covalently attached (PEGylated) to poly(D, L-lactide-co-glycolide acid) (PLGA) to generate PEGylated PLGA nanoparticles. This nanocarrier was coupled to a single domain heavy chain antibody fragment (nanobody) that specifically recognizes the surface of the protozoan pathogen Trypanosoma brucei. Nanoparticles were loaded with pentamidine, the first-line drug for T. b. gambiense acute infection. An in vitro effectiveness assay showed a 7-fold decrease in the half-inhibitory concentration (IC50) of the formulation relative to free drug. Furthermore, in vivo therapy using a murine model of African trypanosomiasis demonstrated that the formulation cured all infected mice at a 10-fold lower dose than the minimal full curative dose of free pentamidine and 60% of mice at a 100-fold lower dose. This nanocarrier has been designed with components approved for use in humans and loaded with a drug that is currently in use to treat the disease. Moreover, this flexible nanobody-based system can be adapted to load any compound, opening a range of new potential therapies with application to other diseases. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 62 条
[1]   Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells [J].
Altintas, Isil ;
Heukers, Raimond ;
van der Meel, Roy ;
Lacombe, Marie ;
Amidi, Maryam ;
Henegouwen, Paul M. P. van Bergen En ;
Hennink, Wim E. ;
Schiffelers, Raymond M. ;
Kok, Robbert J. .
JOURNAL OF CONTROLLED RELEASE, 2013, 165 (02) :110-118
[2]   Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor [J].
Baral, Toya Nath ;
Magez, Stefan ;
Stijlemans, Benoit ;
Conrath, Katja ;
Vanhollebeke, Benoit ;
Pays, Etienne ;
Muyldermans, Serge ;
De Baetselier, Patrick .
NATURE MEDICINE, 2006, 12 (05) :580-584
[3]   The rise and fall of sleeping sickness [J].
Barrett, MP .
LANCET, 2006, 367 (9520) :1377-1378
[4]   The trypanosomiases [J].
Barrett, MP ;
Burchmore, RJS ;
Stich, A ;
Lazzari, JO ;
Frasch, AC ;
Cazzulo, JJ ;
Krishna, S .
LANCET, 2003, 362 (9394) :1469-1480
[5]   The fall and rise of sleeping sickness [J].
Barrett, MP .
LANCET, 1999, 353 (9159) :1113-1114
[6]   Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth [J].
Behdani, Mahdi ;
Zeinali, Sirous ;
Karimipour, Morteza ;
Khanahmad, Hossein ;
Schoonooghe, Steve ;
Aslemarz, Azam ;
Seyed, Negar ;
Moazami-Godarzi, Reza ;
Baniahmad, Farzad ;
Habibi-Anbouhi, Mahdi ;
Hassanzadeh-Ghassabeh, Gholamreza ;
Muyldermans, Serge .
NEW BIOTECHNOLOGY, 2013, 30 (02) :205-209
[7]   Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA-PEG diblock copolymers [J].
Beletsi, A ;
Panagi, Z ;
Avgoustakis, K .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2005, 298 (01) :233-241
[8]   Functionalized poly(lactic-co-glycolic acid) enhances drug delivery and provides chemical moieties for surface engineering while preserving biocompatibility [J].
Bertram, James P. ;
Jay, Steven M. ;
Hynes, Sara R. ;
Robinson, Rebecca ;
Criscione, Jason M. ;
Lavik, Erin B. .
ACTA BIOMATERIALIA, 2009, 5 (08) :2860-2871
[9]   PEGylation strategies for active targeting of PLA/PLGA nanoparticles [J].
Betancourt, Tania ;
Byrne, James D. ;
Sunaryo, Nicole ;
Crowder, Spencer W. ;
Kadapakkam, Meena ;
Patel, Shefali ;
Casciato, Shelly ;
Brannon-Peppas, Lisa .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 91A (01) :263-276
[10]   Human African Trypanosomiasis [J].
Brun, Reto ;
Blum, Johannes .
INFECTIOUS DISEASE CLINICS OF NORTH AMERICA, 2012, 26 (02) :261-+