Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system

被引:160
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
基金
美国国家科学基金会;
关键词
Riemann-Hilbert problem; N-soliton solution; Integrable hierarchy; HAMILTONIAN STRUCTURES; INTEGRABLE SYSTEMS; SEMIDIRECT SUMS; EQUATIONS; HIERARCHY;
D O I
10.1016/j.geomphys.2018.05.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 3 x 3 matrix spectral problem is introduced and its associated AKNS integrable hierarchy with four components is generated. From this spectral problem, a kind of Riemann-Hilbert problems is formulated for a system of coupled mKdV equations in the resulting AKNS integrable hierarchy. N-soliton solutions to the coupled mKdV system are presented through a specific Riemann Hilbert problem with an identity jump matrix. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 50 条