Shuffling quantum field theory

被引:10
作者
Kreimer, D [1 ]
机构
[1] Harvard Univ, Lyman Lab, Cambridge, MA 02138 USA
关键词
renormalization; Feynman diagrams;
D O I
10.1023/A:1007633104800
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss shuffle identities between Feynman graphs using the Hopf algebra structure of perturbative quantum field theory. For concrete exposition, we discuss vertex function in massless Yukawa theory.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 39 条
  • [1] Borwein J.M., 1997, Electronic J. Comb, V4, pR5
  • [2] Broadhurst D. J., HEPTH9609128
  • [3] Broadhurst D. J., HEPTH9612012
  • [4] Broadhurst D. J., HEPTH9604128
  • [5] Renormalization automated by Hopf algebra
    Broadhurst, DJ
    Kreimer, D
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (06) : 581 - 600
  • [6] Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops
    Broadhurst, DJ
    Kreimer, D
    [J]. PHYSICS LETTERS B, 1997, 393 (3-4) : 403 - 412
  • [7] Beyond the triangle and uniqueness relations: non-zeta counterterms at large N from positive knots
    Broadhurst, DJ
    Gracey, JA
    Kreimer, D
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1997, 75 (03): : 559 - 574
  • [8] KNOTS AND NUMBERS IN PHI(4) THEORY TO 7 LOOPS AND BEYOND
    BROADHURST, DJ
    KREIMER, D
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1995, 6 (04): : 519 - 524
  • [9] BROADHURST DJ, HEPTH9810087
  • [10] BROADHURST DJ, HEPTH9607174