Introducing Self-Adaptive Parameters to Self-organizing Migrating Algorithm

被引:0
作者
Kadavy, Tomas [1 ]
Pluhacek, Michal [1 ]
Senkerik, Roman [1 ]
Viktorin, Adam [1 ]
机构
[1] Tomas Bata Univ Zlin, Fac Appl Informat, TG Masaryka 5555, Zlin 76001, Czech Republic
来源
2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2019年
关键词
SOMA; adaptation; CEC17; Friedman; OPTIMIZATION; SOMA;
D O I
10.1109/cec.2019.8790283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new modification for a modern and popular optimization Self Organizing Migrating Algorithm (SOMA) is presented. SOMA resembles swarm-based algorithms together with mutation process given by perturbation and self-adaptation of individual's migration over the hyperspace of a given optimized solution. However, the quality of the solution found by SOMA strongly depends on user-defined parameters. This is not problematic only for new users, but sometimes for experts as well. The proposed modification allows individual (solution) to change its parameters based on its actual performance and adapts to specific optimization problems. The recent CEC'17 benchmark suite is used for analyzing an original SOMA and performance testing of a proposed SOMA modification. The results are compared and tested for statistical significance.
引用
收藏
页码:2908 / 2914
页数:7
相关论文
共 25 条
[1]  
Agrawal Seema, 2015, COMP COMM AUT ICCCA
[2]  
[Anonymous], 2008, ALGORITHMS NIM
[3]  
Awad N.H., 2016, Technical Report, DOI DOI 10.1007/S00366-020-01233-2
[4]  
Cicková Z, 2016, STUD COMPUT INTELL, V626, P255, DOI 10.1007/978-3-319-28161-2_12
[5]   An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect [J].
Coelho, Leandro dos Santos ;
Mariani, Viviana Cocco .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (12) :2580-2587
[6]  
Davendra D, 2016, STUD COMPUT INTELL, V626, P51, DOI 10.1007/978-3-319-28161-2_2
[7]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[8]  
Dorigo M., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1470, DOI 10.1109/CEC.1999.782657
[9]  
Eberhart R, 1995, A new optimizer using particle swarm theory, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/mhs.1995.494215]
[10]   A hybrid particle swarm optimization applied to loss power minimization [J].
Esmin, AAA ;
Lambert-Torres, G ;
de Souza, ACZ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :859-866