DeepCenterline: A Multi-task Fully Convolutional Network for Centerline Extraction

被引:21
作者
Guo, Zhihui [1 ]
Bai, Junjie [2 ]
Lu, Yi [2 ]
Wang, Xin [2 ]
Cao, Kunlin [2 ]
Song, Qi [2 ]
Sonka, Milan [1 ]
Yin, Youbing [2 ]
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
[2] CuraCloud Corp, Seattle, WA 98104 USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019 | 2019年 / 11492卷
关键词
Centerline; Deep learning; Multi-task; Attention; ROBUST;
D O I
10.1007/978-3-030-20351-1_34
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel centerline extraction framework is reported which combines an end-to-end trainable multi-task fully convolutional network (FCN) with a minimal path extractor. The FCN simultaneously computes centerline distance maps and detects branch endpoints. The method generates single-pixel-wide centerlines with no spurious branches. It handles arbitrary tree-structured object with no prior assumption regarding depth of the tree or its bifurcation pattern. It is also robust to substantial scale changes across different parts of the target object and minor imperfections of the object's segmentation mask. To the best of our knowledge, this is the first deep-learning based centerline extraction method that guarantees single-pixel-wide centerline for a complex tree-structured object. The proposed method is validated in coronary artery centerline extraction on a dataset of 620 patients (400 of which used as test set). This application is challenging due to the large number of coronary branches, branch tortuosity, and large variations in length, thickness, shape, etc. The proposed method generates well-positioned centerlines, exhibiting lower number of missing branches and is more robust in the presence of minor imperfections of the object segmentation mask. Compared to a state-of-the-art traditional minimal path approach, our method improves patient-level success rate of centerline extraction from 54.3% to 88.8% according to independent human expert review.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 9 条
  • [1] Gulsun Mehmet A., 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9902, P317, DOI 10.1007/978-3-319-46726-9_37
  • [2] A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths
    Jin, Dakai
    Iyer, Krishna S.
    Chen, Cheng
    Hoffman, Eric A.
    Saha, Punam K.
    [J]. PATTERN RECOGNITION LETTERS, 2016, 76 : 32 - 40
  • [3] Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography
    Kirisli, H. A.
    Schaap, M.
    Metz, C. T.
    Dharampal, A. S.
    Meijboom, W. B.
    Papadopoulou, S. L.
    Dedic, A.
    Nieman, K.
    de Graaf, M. A.
    Meijs, M. F. L.
    Cramer, M. J.
    Broersen, A.
    Cetin, S.
    Eslami, A.
    Florez-Valencia, L.
    Lor, K. L.
    Matuszewski, B.
    Melki, I.
    Mohr, B.
    Oksuz, I.
    Shahzad, R.
    Wang, C.
    Kitslaar, P. H.
    Unal, G.
    Katouzian, A.
    Orkisz, M.
    Chen, C. M.
    Precioso, F.
    Najman, L.
    Masood, S.
    Unay, D.
    Van Vliet, L.
    Moreno, R.
    Goldenberg, R.
    Vucini, E.
    Krestin, G. P.
    Niessen, W. J.
    van Walsum, T.
    [J]. MEDICAL IMAGE ANALYSIS, 2013, 17 (08) : 859 - 876
  • [4] Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach
    Metz, C. T.
    Schaap, M.
    Weustink, A. C.
    Mollet, N. R.
    van Walsum, T.
    Niessen, W. J.
    [J]. MEDICAL PHYSICS, 2009, 36 (12) : 5568 - 5579
  • [5] Mirikharaji Zahra, 2017, Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017. 20th International Conference. Proceedings: LNCS 10434, P242, DOI 10.1007/978-3-319-66185-8_28
  • [6] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [7] Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations
    Xiong, Guanglei
    Sun, Peng
    Zhou, Haoyin
    Ha, Seongmin
    Hartaigh, Briain O.
    Truong, Quynh A.
    Min, James K.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (02) : 1014 - 1028
  • [8] Progressive Attention Guided Recurrent Network for Salient Object Detection
    Zhang, Xiaoning
    Wang, Tiantian
    Qi, Jinqing
    Lu, Huchuan
    Wang, Gang
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 714 - 722
  • [9] Zheng YF, 2013, LECT NOTES COMPUT SC, V8151, P74, DOI 10.1007/978-3-642-40760-4_10